Comparison between He/O2 and He/H2O atmospheric pressure cold plasmas
Rong, M.; Liu, D.; Wang, X.; Bruggeman, P.J.; Iza, F.; Kong, M.G.

Published in:

DOI:
10.1109/PLASMA.2010.5534151

Published: 01/01/2010

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 27. Dec. 2018
Atmospheric-pressure He/O₂ and He/H₂O plasmas have received growing attention in recent years, for they are easy to be kept cold and diffusive as well as capable of efficiently generating reactive radicals like O and OH. In this contribution we present the results of a comparative study of the chemistry of these two kinds of plasmas and their suitability for biomedical applications. An extensive literature review has been performed to create detailed up-to-date chemistry models of these He/O₂ and He/H₂O discharges.

In this study the concentration of O₂ and H₂O are kept below 1% as this is the regime preferred in most practical scenarios. Higher concentration of O₂ (or H₂O) leads to unstable and hotter discharges with lower concentration of relevant reactive species.

The ionic composition of the pure helium discharge changes dramatically with just ppm level admixtures of O₂ or H₂O. This is due to the high energy of helium metastables and the dominant role of Penning processes at low impurity (O₂ or H₂O) concentration. As the impurity concentration increases, a further mode transition is observed. Further similarities between the two types of discharges include the fact that at low concentration electron energy is lost mainly through momentum transfer collisions whereas at high impurity concentration the loss is through inelastic collisions; a growing significance of electron attachment with increasing impurity concentration; and the transition into an electronegative discharge with decreasing electron density at impurity concentrations above a few hundred ppm.

Despite these similar general trends, several important differences are also observed. He/H₂O plasmas are efficient for the generation of OH whereas He/O₂ plasmas are efficient for generating O and O₃. The yield of O in a He/H₂O plasma is typically more than 1 order of magnitude less than in an He/O₂ plasma. However, due to the reduced amount of O₂ in He/H₂O plasma, ozone concentration can be kept very low providing interesting opportunities from an application point of view.

* Work supported by National Natural Science Foundation of China, No. 50907053.