Inversion of Chladni patterns by tuning the vibrational acceleration

Citation for published version (APA):

DOI:
10.1103/PhysRevE.82.012301

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 12. Jun. 2020
Inversion of Chladni patterns by tuning the vibrational acceleration

Henk Jan van Gerner, 1,* Martin A. van der Hoef, 1 Devaraj van der Meer, 1 and Ko van der Weele 2

1 Faculty of Science and Technology and J.M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
2 Department of Mathematics, University of Patras, 26500 Patras, Greece

(Received 25 March 2010; published 22 July 2010)

Inverse Chladni patterns, i.e., grains collecting at the antinodes of a resonating plate, are traditionally believed to occur only when the particles are small enough to be carried along by the ambient air. We now show—theoretically and numerically—that air currents are not the only mechanism leading to inverse patterns: When the acceleration of the resonating plate does not exceed \(g \), particles will always roll to the antinodes, irrespective of their size, even in the absence of air. We also explain why this effect has hitherto escaped detection in standard Chladni experiments.

DOI: 10.1103/PhysRevE.82.012301

PACS number(s): 45.70.-n, 05.65.+b, 47.11.-j

Introduction. A classic way of visualizing standing waves is by sprinkling sand or salt on a horizontal plane and bring it into resonance by, e.g., a violin bow. The particles will move to the nodal lines, giving rise to the famous Chladni patterns, by now a standard high-school demonstration experiment [1,2]. Much less known is that very fine particles will move to the antinodes: This was already noted by Chladni himself, who observed that tiny hair shavings from his violin bow were carried to the antinodes, and systematically studied by Faraday with the use of lycopodium powder [3]. He and others showed that the inverse Chladni patterning of fine particles is due to air currents induced by the vibrating plate [3–6], which drag the particles along to the antinodes.

In this paper we give a proof-of-principle that all particles—also large ones for which the effect of air can be ignored—are able to form inverse Chladni patterns, by a completely different mechanism: If the vibrational acceleration of the plate remains below \(g \), their movement due to the vibration is directed toward the antinodes. In other words, one can switch from standard to inverted Chladni patterns simply by tuning the acceleration of the resonating plate. We demonstrate this analytically and confirm it by numerical simulation. We also propose how the phenomenon might be observed experimentally, which turns out to be difficult but not impossible.

Numerical simulations. The simulated system consists of a flexible rectangular plate on which 80 000 glass beads \((\rho =2.50 \times 10^3 \text{ kg/m}^3, \text{ diameter }1.0 \text{ mm})\) are uniformly distributed. The plate is fixed along its outer rim. We excite a standing wave pattern by applying one of the natural frequencies \(\omega_{kl}\) of the plate, corresponding to \(k \) sinusoidal half-wavelengths in the \(x \) direction and \(l \) in the \(y \) direction. Ignoring the additional bending of the plate under its own weight (we come back to this later), the vertical deflection at position \((x,y)\) is then given by:

\[
z(x,y,t) = a \sin (\omega_{kl}t) \sin \left(\frac{k \pi x}{L_x} \right) \sin \left(\frac{l \pi y}{L_y} \right),
\]

(1)

(with \(k,l =1,2,3,\ldots \)), where \(a \) is the amplitude of the vibration and \(L_x=L_y=62 \text{ cm} \) the size of the plate. As an example, in Fig. 1, we have excited the \(2 \times 2 \) mode, which for a typical stainless steel plate of 1 mm thickness has a natural frequency of \(f_{22}=(\omega_{22}/2\pi)=50 \text{ Hz} \) [9].

The trajectories of the particles are calculated via a Granular Dynamics code [7], in which the collisions (with the plate, and between the particles themselves) are taken care of by a three-dimensional soft sphere model including tangential friction. The results do not depend sensitively on the precise values of the coefficients of friction and (normal and tangential) restitution, which are set to 0.20, 0.90, and 0.33, respectively, both for the particle-plate and particle-particle interactions. Our key parameter is the dimensionless acceleration \(\Gamma=a\omega_{22}^2/2\pi \), i.e., the ratio of the (maximal) vibrational and the gravitational acceleration. For a given mode, with a prescribed frequency \(\omega_{22} \), the value of \(\Gamma \) is varied via the amplitude \(a \).

Figure 1(a) shows the final pattern when the plate is given

![Figure 1](image)

FIG. 1. (a) Top view of a flexible plate resonating in its \(2 \times 2 \) mode, at 50 Hz, with an amplitude of 0.40 mm (dimensionless acceleration \(\Gamma=4.0 \)). After 4 s most particles have collected at the nodal lines, forming a classic Chladni pattern. (b) The same plate at a smaller amplitude of 0.09 mm (\(\Gamma=0.91 \)). The particles now migrate from the nodal lines to the anti-nodes and after 1 min an inverse Chladni pattern has formed. A movie of the formation process can be found in [8].

*Present address: National Aerospace Laboratory, P.O. Box 153, 8300 AD Emmeloord, The Netherlands.
an amplitude of 0.40 mm ($\Gamma = 4.0$). In this case the local dimensionless acceleration is larger than unity over a size-
able region around the antinodes, with a maximum of 4.0 at the antinodes themselves. The particles in these regions start
to bounce and the bounces tend (on average) to increase their kinetic energy. On the other hand, at the nodal lines the di-

dimensions less acceleration is zero and the inelastic collisions with the plate reduce the kinetic energy of the particles; this
effect is further enhanced by the mutual particle-particle col-

Figures with the scale $W = H_{20841}$

If we reduce the amplitude to $a = 0.09$ mm [$\Gamma = 0.91$, Fig.

Theory. Why do the particles move to the antinodes for
accelerations below 1 g, i.e., when do they not bounce? The

The forces W_{\perp}, F_{n}, and W_{\parallel} are shown in Fig. 2 at two
different instants. In Fig. 2(a) the plate is accelerating up-
ward at the location of the particle, so $|W| > mg$. In Fig. 2(b)
it is accelerating downward, so now $|W| < mg$. As a result,

The effective weight W of a particle on the resonating
plate and the normal force F_{n} at two moments during a vibration
cycle; the amplitude of the plate has been exaggerated for clarity.
The component W_{\perp} and the normal force F_{n} balance each other,
while the component W_{\parallel} gives the particle an acceleration along
the plate’s surface. It is larger in (a) than in (b) and hence the acceleration
averaged over a complete vibration cycle is directed toward the antinodes.

The component parallel to the plate (W_{\parallel}) is larger in Fig. 2(a)
than in Fig. 2(b), hence the net acceleration over a complete
cycle is directed to the antinodes. This is the origin of the
inverse Chladni patterning.

Let us analyze this mechanism in some more detail. The

and this gives the particle both a translational and rotational acceleration. The equation of motion for the translation is

where m is the mass of the particle, and the minus sign
indicates that W is a force pointing in the negative z direction.
Its magnitude $|W|$ oscillates around mg. It can be split in a
component perpendicular to the plate W_{\perp}, which is coun-
teracted by the normal force F_{n} on the particle, and a parallel
component W_{\parallel}, which gives the particle an acceleration along
the plate’s surface.

The forces W_{\perp}, F_{n}, and W_{\parallel} are shown in Fig. 2 at two
different instants. In Fig. 2(a) the plate is accelerating up-
ward at the location of the particle, so $|W| > mg$. In Fig. 2(b)
it is accelerating downward, so now $|W| < mg$. As a result,
FIG. 3. (Color online) Time-averaged horizontal acceleration field experienced by beads rolling over a rectangular plate resonating in its 2×2 mode for $\Gamma=0.91$, as in Fig. 1(b). Only one quarter of the plate is shown. The contour lines show the magnitude of the acceleration, also indicated by the length of the arrows. The acceleration field points to the antinode, explaining the formation of the inverse Chladni pattern.

$$\langle \ddot{x}(x,t) \rangle = \frac{\omega_{ij}}{2\pi} \int_0^{2\pi} \omega_{ij} \ddot{x}(x,t) dt = \frac{5k\pi^2\omega^2_{ij}}{28L_x} \sin \frac{2k\pi x(t)}{L_x},$$

where $\Gamma=\omega^2_{ij}/g$ is understood not to exceed 1. Note that the term of Eq. (3) involving g vanishes in the integration, reflecting the fact that the time-averaged contribution of gravity to the parallel acceleration is zero.

The acceleration in both directions x and y simultaneously can be derived in analogous manner, and Fig. 3 shows the average horizontal acceleration as a function of the position (x,y) for one quarter of the vibrating plate in the 2×2 mode, in top view. The acceleration field is directed to the antinodes, and its magnitude is maximal somewhere midway between the nodes and antinodes. At the nodes and antinodes themselves the horizontal acceleration is zero. That is why the migration of particles beginning at the nodes [as in Fig. 1(b) and the accompanying video [8]] starts slowly, then speeds up, and finally comes to rest again at the antinodes [15].

Close inspection of Fig. 3 shows that the arrows are not pointing straight toward the anti-node (except on the diagonals): They are curving gently toward the four diagonal lines, bending around the four “islands” of maximal acceleration. Together with the regions of small acceleration near the nodal lines, this explains the observed diagonal migration channels in Fig. 1(b).

In order to quantitatively compare theory and numerical simulation, we carried out a simulation for 900 evenly distributed particles, initially at rest with respect to the plate. Owing to the limited number of particles and their uniform initial distribution, they do not collide with each other during the first 7 s (this is important for the comparison, since the analysis given above does not take into account collisions): The solid dots in Fig. 4 are the particle positions after 5 s of simulation, whereas the line crossings represent the theoretically predicted positions according to the (x,y)-version of Eq. (6). The correspondence is seen to be very good.

Experimental considerations. Our simulations and theoretical analysis show that inverse Chladni patterns are not observed to fine dust particles that are swept along by the air currents around the resonating plate. Large beads (on which the air currents have no effect whatsoever) can form inverse Chladni patterns too. Why is it then that no one has ever reported this observation, even though the Chladni plate is a well-known and often conducted experiment? We discuss two important reasons.

The first reason stems from the fact that the plate must be perfectly horizontal: Even a small deviation may already outbalance the tiny vibration amplitudes imposed by the condition $\Gamma<1$ [typically one-tenth of a millimeter or less, cf. Figure 1(b)]. At the outer rims of the plate this is just a question of accurate alignment, but the horizontality is also affected by the bending of the plate under its own weight and that of the particles. Under normal circumstances, the deflection of the middle of the plate due to its own weight will be considerably larger than the largest admissible vibration amplitude a, so the particles will simply roll toward the center, overpowering any tendency to form inverse Chladni patterns.

The deflection for a square plate of dimensions $L \times L$, density ρ, and thickness h is given by [17]:

$$d_{\text{bend}} = 0.0046 \frac{g\rho h L^4}{D},$$

where $D=EH^2/12(1-\nu^2)$ is the stiffness of the plate, with E the elastic modulus and ν Poisson’s ratio [18]. This is to be compared with the largest admissible vibration amplitude $a_{\text{max}}=g/\omega^2_{ij}$ (from the condition $\Gamma<1$), with the frequency of the $k \times l$ mode being given by $\omega_{kl}=(k^2+l^2)\pi^2L^{-2}(D/\rho h)^{1/2}$ [9], so
Interestingly, the ratio \(R = a_{\text{bend}} / a_{\text{max}} = 0.004 \) \(0.06(k^2+l^2)^2 \pi^4 \) is independent of the material properties or plate dimensions; it only depends on the mode that is excited. For the \(2 \times 2 \) mode one finds \(R = 25.3 \), and even for the \(1 \times 1 \) mode the ratio is still 1.58 \([19]\). It is therefore necessary to experimentally suppress the deflection of the plate by raising the air pressure below the plate by an amount \(gph / \rho \). Still, one finds only depends on the mode that is excited. For the \(2 \times 2 \) mode we use the parallel force we use \(\mu_r W \), with \(\mu_r \) the coefficient of pre-rolling friction \([20]\), so we require \(W_i > \mu_r W \). It is clearly advantageous to choose the particles and plate such that \(\mu_r \) is small, i.e., both of them should hardly deform. For steel particles on a steel plate its value is in the order of \(\mu_r = 0.002 \) to \(0.003 \), if proper care is taken to eliminate disturbing effects such as the formation of liquid bridges due to humidity or a liquid film on particle and plate.

Now, \(W \) is approximately equal to \(mg \), and for the parallel force we use \(W_i = \frac{1}{2} \rho(\dot{\bar{x}}) \) with \(\langle \dot{\bar{x}} \rangle \) given by Eq. (6). In the fact we use its maximum value, at the moments when \(\sin(4 \pi t / L_i) \) = 1, and with \(\Gamma = 1 \). The condition for setting the particles in rolling motion then takes the form \(k \pi g / 4 L_i \approx \mu_r \). Inserting the expression for \(a_{\text{ij}} \) given above Eq. (8), this yields the following condition for the size of the plate:

\[
L \approx \left[\frac{4(k^2+l^2)^2 \pi^4 D}{kg \rho h \mu_r} \right]^{1/3}.
\]

For the \(2 \times 2 \) mode \((k=2)\) on a steel plate of thickness \(h = 1 \times 10^{-3} \) m (the same as in the simulations of Fig. 1) this is readily evaluated to give \(L \approx 10 \mu_r^{1/3} \) \([18]\). With \(\mu_r = 0.003 \), to be on the safe side, this means that the size of the plate must be at least \(1.45 \times 1.45 \) m2.

The above requirements (the pressurization below the plate, and its large size) are demanding but not forbidding. It will be highly interesting to perform the experiment and witness the inverse Chladni pattern in real.

We thank Katherine Giannasi, Hans Kuipers, Detlef Lohse, and Hans-Jürgen Stöckmann for useful discussions. This work is part of the research program of FOM which is financially supported by NWO.

[8] See supplementary material at http://link.aps.org/supplemental/10.1103/PhysRevE.82.012301 for a video showing the formation of the Chladni and inverse Chladni patterns of Fig. 1.
[10] The influence of their collective mass on the resonant mode may in fact give the particles some extra drive towards the antinodes. A related effect is observed in soap films excited by a sound wave, where the mass distribution (self-adapting the film’s resonant mode to the excitation frequency) concentrates at the antinodes \([11]\).
[12] We neglect the terms in \(\dot{\bar{x}} \) with amplitudes \((2k\pi / L_i)\bar{x} \), \((2\pi / L_i)\bar{x} \), and \((k\pi / L_i)\dot{\bar{x}} \). For \(k=2 \) all these terms are much smaller than \(g \).
[14] When a particle rolls without slipping, its point of contact with the plate is instantaneously at rest, so the friction force is a static (not a dynamic) one.
[15] At first sight the mechanism described here is reminiscent of the drift of particles floating on a resonating water surface \([16]\), which also happen to cluster in Chladni patterns, either standard or inverted ones. However, for floating particles the distinction between the two types of patterns is due to capillarity effects, not to a variation of \(\Gamma \). Hydrophilic particles gather at the nodes of the water surface (forming a standard Chladni pattern), whereas hydrophobic particles go to the antinodes \([16]\).
[18] A stainless steel plate has density \(\rho = 7.8 \times 10^3 \) kg/m3 and stiffness \(D = 18.3 \) kg m2/s2 (elastic modulus \(E = 20 \times 10^{11} \) Pa, Poisson’s ratio \(v = 0.30 \)).
[19] The \(1 \times 1 \) mode has only one antinode, at the center of the plate, so in this case the inverse-Chladni mechanism and the natural tendency to roll towards the lowest bending point both direct the particles to the central position. This makes the \(1 \times 1 \) mode less suitable to demonstrate the inverse Chladni pattern.
[20] For rolling friction, similar as for sliding friction, the static pre-rolling coefficient exceeds the dynamic coefficient which holds when the particle is already rolling. See e.g. K. G. Buzdinski, Wear 259, 1443 (2005); K. de Moerlooze and F. Al-Bender, Adv. in Tribology Vol. 2008, 561280 (2008).