From backpacks to smartphones: past, present and future of wearable computers

Citation for published version (APA):

DOI:
10.1109/MPRV.2009.44

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Aug. 2023
From Backpacks to Smartphones: Past, Present, and Future of Wearable Computers

Oliver Amft and Paul Lukowicz

The 5th International Symposium on Wearable Computing in 2001 (ISWC 01) devoted an entire session to system design. More important, people wearing a broad range of wearable systems filled the conference halls. The exhibition and gadget show, both with a strong focus on wearable hardware, were the centerpiece of the conference. Among the systems shown (and worn) were the IBM Linux Watch, the Carnegie Mellon University (CMU) SPOT platform, the Massachusetts Institute of Technology MITrill, the ETH WearARM, and the CharmIT system (see Figure 1) that originated at GeorgiaTech (which has been the “workhorse” of wearable enthusiasts for many years).

By contrast, at ISWC 08 not a single paper dealt with computing platforms. More tellingly, only two participants wore computer systems, and no one showed any new platforms at the exhibition. At the same time, by our estimate, around 30 percent (probably more) of the audience had iPhones and comparable smart phones and were using them to access the Internet on a regular basis.

Does that mean that the smart phone has made the wearable computer obsolete? And where does the rise of the smart phone leave wearable computing research?

While voices in the community are talking about the smart phone bringing the “death of the wearable computer” (a panel with this title was actually proposed for ISWC two years ago), we believe that the opposite is true. Today’s smart phones in many ways represent the culmination of the ideas that drove wearable systems research in the past. They offer a platform to explore core wearable research topics such as sensing, context awareness, wearable interfaces, and new application concepts. At the same time, the market penetration of smart phones promises to give the results of such research a broad real-world impact.

THE CONCEPT

We can attribute the foundations of wearable computers to the inventions of pocket and wristwatches in the 16th century (en.wikipedia.org/wiki/Watch). Among the first actual wearable computers were the systems to predict roulette wheels of Edward Thorp and Claude Shannon in the early 1960s and that of Hubert Upton to aid lip reading.

In the early 1990s, Thad Starner and Steve Mann at MIT, among others, pioneered modern-day wearable computing. At a time when computing had just entered the home with large, clumsy PCs, they envisioned computers that:

- they could always have with them and use any time and any place, not just at the desk;
- have interfaces that would make them usable even while a person is physically and mentally engaged in a complex real world;
- augment human perception and mul-
tiply human mental capabilities; and
• have awareness of the physical envi-
ronment and can incorporate this
awareness in their functionality.

Clearly, no off-the-shelf comput-
ing devices existed at the time that fit-
ted such a vision. Thus, the search for
appropriate wearable computing devices
became a key research question.

THE PAST
For the subsequent development of
wearables, we highlight trends in com-
puting platforms while omitting many
further foundational details. Bradley
Rhodes and many contributors com-
piled a summary of historical events
from which we took some of the infor-
mation in this review (www.media.mit.
edu/projects/wearables/timeline.html).

In the 1980s, rapid electronic mini-
turization and convenient availability
of computer parts led to several wear-
able computers that addressed specific
applications, such as Steve Mann’s 1981
backpack-mounted
computer to con-
trol cameras. In
the ’90s, increas-
ing processing per-
formance paved
the way for general-purpose wearable
computers that allowed mobile users
to perform classic desktop computing
tasks. Many of the early systems were
worn at the waist, as locations close to
the center of body mass made it easier
to deal with device sizes and weight.
Among these systems were Doug Platt’s
Hip-PC in 1991, based on a Intel 80286
processor. This system served as basis
for MIT’s Lizzy, which Starner wore
in 1993 along with a Private Eye head-
mounted display (HMD) and a one-
headed keyboard, called Twiddler (see
Figure 2). In 1990, one of the first com-
mercial solutions—the Xybernaut—
appeared on the market (see Figure 3).
The standard Xybernaut system setup
consisted of a belt-attached computing
block and a carry-on display.

In 1994, Edgar Matias and col-
leagues presented a wearable computer
based on a small display and a half-
QWERTY keyboard for one-handed
operation (see Figure 4). Both devices
were attached to forearms. By mov-
ing the arms close together, the wearer
could type and watch the input simulta-
neously. Matias commercialized this
solution. IBM researchers followed
the half-keyboard concept with a “belt
computer” (www.almaden.ibm.com/
cs/user/inddes/halfkb.html). Panasonic
presented a similar product, called the
Brick Computer, in 2002. The Brick
was coupled wirelessly to an arm-worn
display. Many companies introduced
concept studies of arm-worn comput-
ers in the ’90s and beyond. A few sys-
tems achieved market success, such as
Vocollect (www.vocollect.com), a wear-
able voice-directed logistics solution, as
well as the Symbol Technologies wire-
less barcode scanners.

Since the early 2000s, various
mobile computers have appeared on
the market, such as the Sharp Zau-
rus (en.wikipedia.org/wiki/Sharp_Zau-
rus) and the Nokia N770 (www.
nokia.com) that eventually led to the
diversified product range of thin cli-
ents and smart phones today. In par-
allel, research systems appeared, such
as the Linux Advanced Radio Termi-
nal (LART) embedded computer by
TU Delft and the SPOT, which suc-
ceeded the previous VuMan wearable
generations from CMU. The TU Delft

Figure 2. Private Eye. Thad Starner sports wearable
computing gear in 1993.

Figure 3. Xybernaut. This wearable system was among the first
commercial solutions of the 1990s.
developers made the LART design available as open source to researchers interested in using the embedded system in their own applications (www.lartmaker.nl).

Besides waist-attached and backpack-worn units, researchers investigated further integration concepts in the early 2000s, such as the Compaq Itsy, a pocket computer for speech recognition and real-time movie decoding. Researchers at ETH Zurich investigated approaches to clothing-attached electronics resulting in the WearARM computing core in 2001 (see Figure 5). The WearARM used flex-print technology to interconnect components in a flat system profile.

In the ’80s, technological challenges related to size, power consumption, and weight constrained the development of wristwatch computers to simple calculators. But in 2000, Chandra Narayanaswami and his team at IBM presented a highlight of wristwatch integration work with the “IBM Linux Watch” (see Figure 6). In 2004, the ETH Wearable Group introduced the Q-Belt Integrated Computer (QBIC) as a new research platform (see Figure 7) in which developers integrated the actual computer into a belt buckle. They attached peripherals and interfaces, such as batteries, HMDs, and sensors to belt-integrated connectors. Researchers continue to use this system in real-world data recording and activity recognition investigations today.

Many researchers’ developments and application reports made clear that comfortable interaction with mobile and wearable computers is a major challenge, related to managing the user’s attention and providing convenient controls for information entry. Various see-through and look-around HMDs have been developed that instantly switch focus between computer and environment. The most convenient HMD might eventually overlay a wearer’s actual vision with additional information and cues. Researchers have conducted various investigations to augment reality in this way, such as Eyetap goggles (www.eyetap.org). Bruce Thomas and his colleagues developed the Tinmith system (see Figure 8) to study information overlay outdoors, using a wearable computer (www.tinmith.net). (For more information on Thomas and his colleagues’ work, see “Through-Walls Collaboration” on page 43.)

Sensors served as additional and later even primary information sources for wearable computers, with the goal of supplementing or even replacing manual information entry by context.
Wearable computing awareness. Consequently, mobile and wearable computing systems became a prerequisite to record sensor data in research studies on context recognition. One historical example of a distributed sensing and processing system is the MIThril jacket of MIT, first presented around 2003 (www.media.mit.edu/ wearables/mithril).

Some approaches went even further in this direction, aiming at integrating complex electronics directly into clothing, such as jacket developments by Philips, Levis, and Infineon. Researchers often envisioned an entire general-purpose computer implemented on a textile substrate as the ultimate “smart garment.”

THE PRESENT
In 2007, Eurotech introduced the Zypad WL1100, a wrist-worn touchscreen computer, to the market for emergency, security, logistics, and further applications (see Figure 9; www.arcom.com/ wearable_computer/Zypad/default.htm). The device includes a number of sensors, such as GPS, motion, and audio to extend information input and functionalities. Another device widely used in the wearable computing community has been the OQO touchscreen PC (see Figure 10; www.oqo.com). It’s small enough that users can comfortably wear it on the belt, features PC-like functionality, and has a broad range of interfaces such as USB host, Bluetooth, WLAN, and VGA. While such devices are still too bulky for everyday consumer use, they’re perfectly satisfactory in many industrial applications. The main remaining concern is battery runtime, which remains well short of the typically required 12 to 24 hours. Another concern is the connections to peripherals such as HMDs or specialized sensors, which often require bulky on-body cabling.

In parallel to the aforementioned developments, recent years have shown an explosion in smart phones’ performance and functionality. Systems such as the iPhone and the Android phone are powerful computers running full-scale operating systems equipped with a broad range of sensors. Being mainstream consumer devices, they have a form factor that’s widely accepted for everyday use. As a consequence, the wearable research community has been increasingly adopting them, in particular for long-term sensor data collection and activity recognition applications.

The default interaction with a mobile phone currently doesn’t follow the wearable concepts. Typically, it requires the use of both hands and full user attention. Thus, it isn’t possible to use the device while engaged with real-world tasks, which is a key attribute of wearable systems. However, with interfaces such as Bluetooth headsets, consumer-oriented HMDs (such as the MyVu, for the iPhone; www.myvu.com), and simple keypads embedded in jackets (such as the Burton jacket for skiers; www.burton.com), smart phones are increasingly becoming true wearables.

The key issues with current mobile phones is that they don’t offer sufficient flexibility for combining different functional modules and provide limited connectivity for additional sensors or interaction devices. Often phones just provide Bluetooth, which seems inappropriate for interconnecting small distributed sensors with the required runtime of several days. This has motivated ongoing development of platforms with a focus on modular

Figure 7. Q-Belt Integrated Computer (QBIC). ETH Zurich introduced QBIC for use in research and as a design study in 2004.

Figure 8. Tinmith. Wearable system that overlays computer information on the wearer’s view, introduced by the University of South Australia in 2003.

Figure 9. Zypad WL1100. Eurotech introduced Zypad in 2007 as a wrist-worn wearable computer for emergency, security, logistics, and further applications. (image courtesy of Eurotech)

Figure 10. OQO: A hand-held touchscreen computer that has been widely used in wearable computing research.
sensor configurations. As an example in 2008, Tanzeem Choudhury and her colleagues from Intel, the University of Washington, and Stanford presented a mobile sensing platform (MSP) for activity recognition research. The MSP used a module concept to attach different sensor modules. Similar efforts are underway in related communities, such as pervasive health and body sensor networks.

THE FUTURE

Our discussion shows that although existing smart phone platforms certainly aren’t perfect from the point of view of wearable applications, the main concerns aren’t the computing units and their form factors. The key issue is the connectivity between the main computing unit (which will remain some sort of commercial, mobile phone-like “brick”) and other devices, sensors in particular. The latter are what really differentiate a wearable system from a mobile phone. In most cases, the other devices should and will be tightly integrated and possibly even built with textile technology. Thus, it seems that there’s little space for further research on dedicated wearable computing platforms. We also argue against the classical wearable vision of a computer (or for that matter, a phone or a MP3 player) that’s fully integrated into clothing (possibly even built on a textile substrate). Instead we envision future wearable systems that consist of four main layers:

- Mobile phone-like device as central on-body platform for general purpose computing tasks. It will likely remain a standalone device carried in a pocket or a holster, not integrated in clothing. However, we’re likely to see vastly improved connectivity to other devices and sensors, possibly including interfaces to textile electronics.
- Carry-on peripherals such as headsets, displays, and textile touchpads. Such peripherals will facilitate real wearable interactions, making the system usable even when the user is interacting with the real world.
- Microsensors deeply embedded in accessories, such as rings, shoes, and belts, and, in some cases, encapsulated in clothing. Such sensors are essential to provide the system with environmental awareness and implement many health and sports related applications.
- Sensing, communication, and power generation infrastructure that isn’t just built on textiles, but actually implemented in textile technology. Such infrastructure is optimally suited to leverage the advantages of clothing and textiles, such as that they’re attached to certain body parts (important for sensing) or span entire body parts (relevant for communication and large area power generation—for example, using solar cells).

These layers should seamlessly interoperate, allowing applications running on the main computing device to make automatic transitions between interfaces and sensing setups as the user changes clothing.

Initial signs are already emerging that systems are moving toward the type of architecture we describe. The Bluetooth headset is a good example of a widely accepted carry-on peripheral that allows the user to interact with mobile phones while walking or driving. Nike recently introduced running shoes with an acceleration sensor wirelessly communicating with an iPod or iPhone, which nicely illustrates the concept of an embedded microsensor. Increasingly, textiles provide the infrastructure for technology, such as sports jackets providing “cable channels” for head phones as well as simple textile touchpad sleeves that, for example, let skiers operate their mobile phones without removing their gloves. Researchers have also demonstrated clothing-integrated solar cells.

While the emergence of smart phones as widespread versatile mobile platforms has rendered classic, general-purpose wearable computing devices obsolete, their emergence is a powerful enabler for a wide range of wearable concepts, systems, and applications.

ACKNOWLEDGMENTS

The authors are grateful to many researchers who have contributed photographs of their wearable computers for this article. Moreover, the authors...
thank Thad Starner for his comments on an earlier draft of this article. EU WearIT@Work project partly sponsored the author’s work.

REFERENCES


Oliver Amft is an assistant professor at TU Eindhoven. Contact him at amft@tue.nl.

Paul Lukowicz is a full professor at the University of Passau. Contact him at paul.lukowicz@uni-passau.de.