Round-Robin measurements of linewidth enhancement factor of semiconductor lasers in COST 288 action

Citation for published version (APA):

DOI:
10.1109/CLEOE-IQEC.2007.4385967

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Round-Robin Measurements of Linewidth Enhancement Factor of Semiconductor Lasers in COST 288 Action

Guido Giuliani¹, Silvano Donati¹, Asier Villafranca, Javier Lasobras, Ignacio Garces, Marek Chacinski, Richard Schatz, Christos Kouloumentas, Dimitrios Klonidis, Ioannis Tomkos, Pascal Landais, Raul Escorihuela, Judy Rorison, Jose Pozo, Andrea Fiore, Pablo Moreno, Marco Rossetti, Wolfgang Elsasser, Jens VanStaden, Guillaume Huyet, Mika Saarinen, Markus Pessa, Pirjo Leinonen, Ville Vilokkinen, Marc Sciamanna, Jan Danckaert, Krassimir Panajotov, Thomas Fordell, Asa Lindberg, Jean-François Hayau, Julien Poette, Pascal Besnard, Frédéric Grillot, Mauro Pereira, Rikard Nelaner, Andreas Wacker, Alessandro Tredicucci, Richard Green

All Authors take part in the EU COST 288 Action “Nanoscale and Ultrafast Photonics”. For the complete list of affiliations, see: http://www.unipv.it/optoele/Giuliani/alpha/paperCOST288_CLEOEU_2007.html

¹Dipartimento di Elettronica, Università di Pavia, Via Ferrata 1, I-27100 Pavia, Italy. e-mail guido.giuliani@unipv.it

Abstract: Round-Robin measurements on the linewidth enhancement factor are carried out in many laboratories participating in EU COST 288 Action. Up to 7 different techniques are applied to DFB, VCSELs, QCL, and QD lasers, and results are compared.

The linewidth enhancement factor (α-factor) is one of the main features that distinguishes semiconductor lasers (SLs) from other types of lasers. The α-factor influences the linewidth, chirp under current modulation, mode stability, laser dynamics, operating regimes in presence of optical feedback and injection, the occurrence of filamentation in broad-area devices.

As reported by Osinski and Buus [1], several different techniques have been proposed to measure the α-factor, without a thorough comparison between the results achieved by different methods. This statement is even more meaningful today, as the number of proposed measuring methods has increased, and many new SL designs have been demonstrated, for which the experimental determination of the α-factor can be critical (e.g., VCSELs, Quantum Dot Lasers, Quantum Cascade Lasers).

The COST 288 Action “Nanoscale and Ultrafast Photonics” [2] is an initiative sponsored by the European Commission and the European Science Foundation, within the frame COST – “European Cooperation in the field of Scientific and Technical Research”. In Working Group 2 “Physics of Photonic Devices” of COST 288, a Round–Robin (RR) measurement activity centered on the α-factor of SLs was started in year 2005, with scheduled end in mid–2007. The main goals are to compare different measurement methods by applying them to the same sets of devices, and to assess the accuracy and repeatability of the methods by applying them in different laboratories.

Two mainstream activities are implemented: 1) measurements on conventional telecommunication devices (i.e., commercial high-power third–window DFB laser); 2) measurements on novel structures (VCSELs, QCLs, QDs).

For the first activity, seven methods have been applied: Halki–Polli (sub–threshold spectra); linewidth (fitting to Henry’s formula); modified linewidth (below– and above– threshold); FM/AM (high–frequency modulation); fiber transfer function (chirp measurement); optical injection (master–slave locking); optical feedback (self–mixing).

The complete set of results will be made available on the COST 288 website [2]. Preliminary results can be summarized as follows. (i) The Halki–Polli method is difficult to be applied to commercial DFBs, due to the lack of knowledge of laser parameters. (ii) The FM/AM method requires modulation well above the relaxation frequency of the SL, and it can be difficult to be implemented with some SL types. (iii) The Fiber Transfer Function can be the most reliable, provided a precise measurement of fiber dispersion is preliminary carried out, and the power along the fiber is controlled to avoid non–linear effects.

In the second activity, critical technical aspects have been identified, relating in particular to QD devices (for which the definition itself of the α-factor is non–trivial), and QCLs. For the latter, a dependence of the α-factor on the injected current is observed, and the experimental results are compared with numerical simulations based on a Keldysh nonequilibrium Green’s functions approach.