JePPIX: the platform for InP-based photonics

Citation for published version (APA):

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
JePIX: the platform for InP-based photonics

Xaveer Leijtens
COBRA Research Institute, Eindhoven University of Technology, the Netherlands
Email: x.j.m.leijtens@tue.nl

Abstract—JePIX is the European platform that offers access to Indium Phosphide based technology for proof of concept, prototyping and large volume manufacturing. This is enabled by using a generic integration technology.

I. INTRODUCTION

The joint European platform for InP-based components and circuits, JePIX, is a technology platform for the development and promotion of Photonic Integrated Circuits (PICs) in Indium Phosphide. JePIX aims at a generic integration technology in which a variety of photonic integrated circuits can be designed and fabricated using the same process. This concept is well known in electronics; in photonics it is new and can lead to huge cost reductions by realizing photonic ICs for a broad variety of applications using a small set of basic building blocks that are integrated in a generic foundry process.

JePIX is one of the three photonic integration platforms that were started from ePIXnet, the EU FP6 Network of Excellence, besides ePIXfab (silicon photonics) and TriPlex (dielectric waveguides).

II. GENERIC INTEGRATION TECHNOLOGY

One of the main challenges for photonic integration is to develop a technology that supports a small set of building blocks with good performance, with which a broad class of functionalities can be realized. At COBRA we use a technology that offers active-passive butt-joint integration: three-step epitaxy by MOVPE, self-aligned CH$_4$-H$_2$ RIE process for etching, planarization and metallization. This process integrates the following building blocks:

1) Passive waveguide devices (PHMs), including the most widely used components such as waveguide bends, multi-mode interference couplers, arrayed waveguide grating demultiplexers (AWGs), and tapers. Shallow and deep-etched PWDs are available, figure 1 and 2, for low and high contrast, respectively.

2) Phase modulators (PHMs) to control the phase of the optical signals. When used in an interferometric configuration, such as a Mach-Zehnder interferometer, phase modulators provide a means for signal intensity modulation or space switching as well.

3) Semiconductor optical amplifiers (SOAs), figure 3. The importance of the SOA for photonics is similar to that of the transistor for electronics: it provides amplification but it also supports a broad class of non-linear signal operations, like wavelength conversion, 2R and 3R signal regeneration, optical time-domain demultiplexing, clock extraction and other digital signal operations. When operating the SOAs in reverse bias, they can be used as high-speed photo-detectors.

4) Isolation sections, figure 4. These are regions where the highly conductive p$^+$-layer is locally removed to provide electrical isolation between different SOAs and/or phase modulators.
At the moment JePPIX is offering small-scale access to the COBRA generic integration process of TU Eindhoven.

III. ACCESS TO MULTI-PROJECT WAFER RUNS

Having a technology that makes use of standard building blocks will greatly reduce the costs of photonic ICs, because the development cost of that technology will be shared by all users of that technology. For smaller-scale projects, those costs can be even further reduced, by making use of multi-project wafer runs. In this approach, different users share cells on the same wafer, and thereby they share the cost of that run, typically proportional to the total chip area that they use.

COBRA offers access to multi-project runs to external users, who are first trained in the design of photonic ICs in a two-week course at the COBRA institute in Eindhoven. The runs then consist of processing active-passive 2-inch epi-wafers, split into 9 cells (typically $4 \times 4 \text{ mm}^2$), see figure 5; three of which are reserved for test structures (T1–T3, to qualify the processing) and 6 cells host the designed PICs of the users (A–F). Each user can make an independent design, even without the need to know anything about the neighboring cell. This is achieved by using pre-defined positions and dimensions of the input and output waveguides, see figure 6. These waveguides may be placed on a 25 µm pitch, either straight or angled, where the 7° angle greatly reduces the reflections from the cleaved chip-facet.

Figure 6. Standardized waveguide locations at cell boundary.

A number of novel devices made from these basic building block in a JePPIX multi-project wafer run at COBRA have been demonstrated, including a mode-locked ring laser [1], which uses a combination of the SOA, isolation and PWD building blocks; a pulse-compressor [2], using combinations of PHM and PWD building blocks; a fast tunable laser [3], integrating SOAs with PWD building blocks. Figure 7 shows a photograph of that tunable laser. Clearly visible are the gold contact pads for the current injection of the SOAs (three bottom contacts), eight contact pads on the top, which connect to short SOA-sections that act as optical gates which select the wavelength, and an AWG acting as wavelength filter is visible on the right side of the picture.

IV. OUTLOOK

COBRA offers small scale access to its process for gaining experience with the generic foundry process. In the EuroPIC project, http://europic.org, transfer of this model to industrial fabs is presently being investigated. Two EuroPIC partners, Oclaro Technology in the UK and the Fraunhofer Heinrich Hertz Institute in Germany, whose processes are conceptually similar to the process of COBRA, are presently preparing their processes for experimental generic foundry runs. When the EuroPIC project is succesful, COBRA will move its activity to development of improved or novel features for later integration in the industrial foundry processes.

REFERENCES

