ACC performance and design

Citation for published version (APA):

Document status and date:
Published: 01/01/2008

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 01. Oct. 2020
ACC performance and design

G.J.L. Nausa, J. Ploegb, M.J.G. v.d. Molengraftc

aDepartment of Mechanical Engineering, Control Systems Technology group, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
g.j.l.naus@tue.nl, m.j.g.v.d.molengraft@tue.nl

bBusiness Unit Automotive, Department of Integrated Safety, TNO Helmond, The Netherlands
jeroen.ploeg@tno.nl

Abstract

Introduction
Adaptive Cruise Control (ACC) enables automatic following of a vehicle. The relative distance \(x_r\) is controlled (see Fig. 1). A driver dependent part determines the desired host vehicle acceleration \(a_{dh}\), while a vehicle dependent part controls the longitudinal dynamics via actuation of the throttle \(u_{th}\) and brake system \(u_{br}\) (see Fig. 2).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1}
\caption{ACC system setup.}
\end{figure}

Problem statement
Focusing on the driver dependent part, nonlinear (situation dependent) driver behaviour generally is accounted for in the controller design via scheduling gains and switching logic, while disregarding stability issues. Furthermore, the lack of appropriately defined performance metrics yields time-consuming tuning by trial-and-error. Hence, performance metrics as well as a structured control framework for ACC are required.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2}
\caption{ACC control structure.}
\end{figure}

ACC performance evaluation
On the basis of literature and on-the-road experiments, metrics are determined to enable objective performance evaluation of an ACC system in a qualitative manner. In case of a passenger car, both comfort and desirability have to be considered. Comfort is mainly related to vestibularly detectable variables, whereas desirability is mainly related to visually and auditorily detectable variables.

Regarding desirability, \(x_r\), \(v_r\), and the so-called time-to-collision \(TTC = x_r/v_r\) are the most promising metrics, yet some situation dependency seems inevitable. Regarding comfort, acceleration and jerk peak values are appropriate metrics enabling objective performance evaluation.

ACC design
Besides the control objective regarding \(x_r\), the relative velocity \(v_r\) should be limited based on desirability and the acceleration and jerk should be limited out of comfort reasons. Furthermore, the nonlinear driver behaviour as well as safety considerations yield various (nonlinear) constraints on the control output \(a_{dh}\).

Model Predictive Control (MPC) is adopted as a suitable, structured framework for constrained, MIMO, nonlinear controller design. MPC minimizes a cost function \(J\) regarding the control output \(u\) over a user-defined prediction horizon; \(\min_{u} J(u, \epsilon, \mathcal{R})\), with \(\epsilon\) the error with respect to the control objectives and \(\mathcal{R}\) the performance related requirements. Adopting a closed-loop MPC synthesis enables explicit, offline optimization of the state-dependent controller gains. This yields a hybrid control synthesis, which prevents the need for significant online computational power.

Simulations as well as on-the-road experiments have been executed, showing appropriate behaviour of the ACC system.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3}
\caption{Screenshot of the simulation environment and the Audi S8 with which the ACC is tested.}
\end{figure}

Future work
Current research focusses on further integration of the performance metrics in the tuning process and the possibly automated, driver-specific tuning.