

Quality-driven methodology for demanding accelarator design

Citation for published version (APA):
Jozwiak, L., & Jan, Y. (2010). Quality-driven methodology for demanding accelarator design. In proc. of the IEEE
Int. Conf. on Quality Electronic Design 2010, ISQUED 2010, 22-24 March 2010, San Jose, USA (pp. 380-389).
IEEE Computer Society. https://doi.org/10.1109/ISQED.2010.5450546

DOI:
10.1109/ISQED.2010.5450546

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. May. 2022

https://doi.org/10.1109/ISQED.2010.5450546
https://doi.org/10.1109/ISQED.2010.5450546
https://research.tue.nl/en/publications/6ea26050-cfcf-4613-ae9e-e99095072da5

978-1-4244-6455-5/10/$26.00 ©2010 IEEE 380 11th Int'l Symposium on Quality Electronic Design

Quality-Driven Methodology for Demanding Accelerator Design

Lech Jóźwiak, Yahya Jan
Eindhoven University of Technology

L.Jozwiak@tue.nl

Abstract
This paper focuses on mastering the architecture

development of hardware accelerators for demanding
applications. It presents the results of our analysis of the main
problems that have to be solved when designing accelerators
for modern demanding applications, and illustrates the
problems with an example of accelerator design for LDPC
code decoders for the newest communication system
standards. Based on the results of our analysis, we formulate
the main requirements that have to be satisfied by an
adequate methodology for demanding accelerator design, and
propose an architecture design methodology which satisfies
the requirements.

Keywords
hardware accelerators, architecture design, design-space
exploration, combined macro- and micro-architecture design

1. Introduction
The recent spectacular progress in modern nano-

electronic technology enabled implementation of complex
information processing systems on single chips, and
facilitated rapid progress in mobile and autonomous
computing, as well as, wire-less and wired communication.
On the other hand however, it introduced unusual technology
and system complexity. Increasingly complex and
sophisticated systems are required to reliably perform real-
time computations to extremely tight schedules with energy,
power and area efficiency never demanded before. In
consequence, opportunities created by modern technology
can effectively be exploited only through adequate usage of
efficient application-specific system architectures and circuit
implementations exploiting more adequate concepts of
computation, storage and communication. This requires
effective and efficient design methods and electronic design
automation (EDA) tools for synthesizing the actual high-
quality hardware platforms implementing the architectures,
and for efficient mapping of applications onto the hardware
platforms.

Numerous embedded system projects have demonstrated
that heterogeneous systems, exploiting a mixture of different
programmable and hardwired processors customized to
different parts of complex applications provide drastically
higher performance and lower power consumption than
traditional homogeneous systems. As critical parts of these
heterogeneous systems hardware accelerators have to be
developed for the most demanding parts of the applications.

This paper focuses on mastering the architecture
development of hardware accelerators for demanding
applications. It presents the results of our analysis of the main
problems that have to be solved in design of accelerators for
modern demanding applications, and illustrates the problems

with design of hardware accelerators for LDPC code
decoders for the newest demanding communication system
standards. The analysis presented demonstrates that the
today’s high-level synthesis is not sufficient to adequately
support the complex hardware accelerator design process for
the modern demanding applications. A more complex and
sophisticated design methodology is needed. Based on the
results of our analysis, we formulated and present in this
paper the main requirements that have to be satisfied by an
adequate methodology for demanding accelerator design, and
propose a quality-driven accelerator design methodology
which satisfies the requirements. This methodology is being
used to design hardware accelerators for different LDPC
code decoders for some of the newest communication system
standards.

2. Issues and requirements of demanding accelerator
design

Although hardware accelerator design is not a new
problem, it is only partially solved, and there is much room
for further extension and/or improvement of the existing
methods and tools. One can construct a trivial hardware
accelerator through a straightforward compilation of an
algorithm described in a hardware description language, like
Verilog or VHDL, or in a high-level language like C, C++ or
SystemC into hardware. However, in most cases the result of
such a straightforward compilation will not be satisfactory
for critical parts of demanding applications. In embedded
computing, hardware acceleration has been intensively
researched during the last decade, mainly for signal, video
and image processing applications, for efficiently
implementing in hardware transforms, filters and similar
complex operations [4]-[11]. All these operations have in
common that they mainly involve functional parallelism, and
either do not require (global) memory accesses, because they
directly process the incoming stream of data, or they require
relatively simple and regular, limited in space and time local
memory accesses between which relatively large portions of
computations are performed. In consequence, the main
problems of hardware accelerator design for this kind of
applications are not related to memory or communication
bottlenecks, but to an effective and efficient processing unit
synthesis through an adequate parallelism exploitation of the
basic register transfer level (RTL) operations needed for the
implementation of the required computations, and adequate
implementation of these basic operations in hardware. For
this kind of applications, the basic concepts of an effective
and efficient accelerator design can be summarized as
follows [1] [2]:
- parallelism exploitation for execution of a particular

computation instance due to availability of multiple

Jóźwiak et al, Quality-Driven Methodology ….

application-specific operational resources working in
parallel;

- parallelism exploitation for execution of several different
computation instances at the same time due to pipelining;

- application-specific optimal synthesis of processing
units, with tailored processing and data granularity.

More specifically, these concepts can be oriented towards the
data parallelism, functional parallelism or their mixture. For
data parallelism exploitation, multiple data instances of the
same type are processed simultaneously provided the
application allows for this and the corresponding resources
are available. In case of functional parallelism, different
operations are performed simultaneously on (possibly)
different data instances. Also, the speculative execution can
be used to exploit more parallelism. To design a high quality
hardware accelerator of this kind, it is necessary to perform a
thorough analysis of the application’s computation
algorithms and exploit specific computational characteristics
inherent to these algorithms. Different characteristics
discovered and accounted for result in different approaches to
the design of hardware accelerators of this kind, and
therefore, in the past a number of different basic accelerator
micro-architecture types were considered:
– straightforward datapath/controller architecture;
– parallel hardware architecture;
– pipeline hardware architecture;
– parallel-pipeline hardware architecture.

Summing up, for this kind of applications, the main
problems of hardware accelerator design are limited to an
effective and efficient computation unit design at the RTL-
level (i.e. micro-architecture design) and circuit synthesis for
the micro-architecture modules. Circuit synthesis can be
performed automatically using one of many available EDA-
tools. Currently, in many cases the micro-architecture design
for this kind accelerators can also reasonably be supported by
the methods of high-level synthesis [4]-[11] and emerging
commercial high-level synthesis tools [12]. Nevertheless, the
RTL-level computation unit design is often not easy, because
some of the modern demanding applications require
resolution of complex data or control dependencies (e.g.
CABAC decoding in the latest multi-domain video coding
standard H.264/AVC [2]), what increases difficulty of an
adequate pipeline construction.

However, many modern applications (e.g. various
decoders in (wireless) communication and multimedia,
network access nodes, encryption applications,
transformations in medical image processing etc.) are of
different kind. They require hardware acceleration of critical
information processing algorithms that involve data
parallelism and complex interrelationships between the data
and computing operations that have to be performed on the
data. This results in complex (global) memory accesses and
complex communication between the memories and
computing units in the related hardware accelerators. For this
kind of applications, the problems of hardware accelerator
design are not limited to an adequate micro-architecture
design for computing units. The main design problems are
related to an adequate resolution of memory and

communication bottlenecks, and to decreasing the memory
and communication hardware complexity, what has to be
achieved through an adequate memory and communication
structure design. Moreover, for this kind of applications, the
memory and communication structure design, and micro-
architecture design for computing units cannot be performed
independently, because they substantially influence each
other. For example, exploitation of more data parallelism in a
computing unit micro-architecture usually requires getting
the data in parallel for processing, i.e. having simultaneous
access to memories in which the data reside (what results in
e.g. vector, multi-bank or multi-port memories) and
simultaneous transmission of the data (what results e.g. in
multiple interconnects), or pre-fetching the data in parallel to
other computations. This substantially increases the memory
and communication hardware. From the above it should be
clear that for applications of this kind complex
interrelationships exist between the computing unit design
and corresponding memory and communication structure
design, and complex tradeoffs have to be resolved between
the accelerator effectiveness (e.g. computation speed or
throughput) and efficiency (e.g. hardware complexity, power
and energy consumption etc.).

Finally, many of the modern demanding applications
involve algorithms with massive data parallelism at the
macro-level or task-level functional parallelism (e.g. LDPC
code decoders of the newest communication system
standards like IEEE 802.11n, 802.16e, 802.15.3c, 802.3an,
802.15.3c, etc.). To adequately serve these applications,
hardware accelerators with parallel multi-processor macro-
architectures have to be considered, involving several
identical or different concurrently working hardware
processors, each operating on a (partly) different data sub-set.
Each of these processors can also be more or less parallel.
For this kind of accelerators, the accelerator's parallelism can
be realized at two levels:
- macro-architecture level, where elements are elementary

processors or accelerators and complex multi-processor or
multi-accelerators are build of them, and

- micro-architecture level, where the internal architecture of
a single processor or accelerator at the RTL-level can be
parallel.

Moreover, there is a trade-off between the amount of
parallelism and resources at each of the two levels (e.g.
similar performance can be achieved with less processors
each being more parallel and better targeted to particular part
of application, as with more processors each being less
parallel and less application-specific). The two architecture
levels are strongly interrelated and interwoven, also through
their relationships with the memory and interconnection
structures. In consequence, optimization of the
performance/resources trade-off required by a particular
application can only be achieved through a careful
construction of an adequate application-specific macro-
/micro-architecture combination. The aim here is to find an
adequate balance between the number of parallel hardware
processors of various kinds, the intra-processor parallelism
and complexity, the complexity and effectiveness of memory

Jóźwiak et al, Quality-Driven Methodology ….

structures, and the complexity of the inter-processor and/or
processor/memory communication, rather than to only
optimize the processing units, or separately optimize the
micro- or macro-architecture. To achieve this aim several
promising macro-/micro-architecture combinations
representing complete complex multi-processor accelerator
architectures have to be considered, and finally, the best of
them has to be selected for an actual realization.
 From the above it should be clear, that the existing high-
level synthesis, specifically developed and limited to RTL-
level micro-architecture synthesis of processing units, is only
able to partly support the internal architecture design for
particular computation units, and is not sufficient to
adequately support the total complex hardware accelerator
design process for the modern demanding applications. It
should also be clear that a new more complex and
sophisticated design methodology is needed for the modern
demanding accelerators than the existing high-level
synthesis. This new methodology should of course account
for the computation unit micro-architecture synthesis (being
the subject of high-level synthesis), but it has also to
adequately address many more issues, including:
- memory and communication structure synthesis,
- macro-architecture synthesis of the multi-accelerator

structures,
- strong interrelationships between the computation unit,

memory and communication organization, and between the
micro-and macro-architecture, and

- tradeoff exploitation between the micro and macro-
architecture, and between the computation unit, memory
and communication structures.

Only an appropriate accelerator architecture design space
exploration and trade-off exploitation between various parts
and features of possible architectures can guarantee an
adequate accelerator design quality. Thus, the design process
for demanding accelerators should rather be focused on the
construction, analysis and evaluation of promising complete
complex accelerator architectures, and using this for the
design-space exploration by “what if” analysis, than on the
fully automatic synthesis of individual computing units as
offered by the today’s high-level synthesis tools. At least
partially, a different kind of design support is crucial here
than that offered by the traditional high-level synthesis. High-
level synthesis tools and other automatic synthesis tools can
and should be used in the scope of the demanding accelerator
design, but for supporting the individual computing unit
design tasks, and for so far as they are effective for these
tasks.

To satisfy the needs of an adequate design of the modern
demanding accelerators, we propose in this paper a quality-
driven design methodology which satisfies the above
discussed requirements. In the sequel to this paper, we use
the accelerator design process for LDPC decoders to
illustrate and further explain the above discussed issues and
requirements of demanding accelerator design, and to
introduce and illustrate our proposed accelerator design
methodology.

3. Main issues of accelerator design for LDPC
decoders

A systematic LDPC encoder encodes a message of k
information bits into a codeword of length n with the k
message bits followed by m parity checks, as shown in Fig.1.
The parity checks are computed using a parity generator
matrix (PGM) G of size kxn. Each parity check is computed
based on a sub-set of message bits. The codeword is
transmitted through a communication channel to the decoder.
The decoder checks the validity of the received codeword by
re-computing the parity checks, using a sparse binary matrix
H of size mxn, called parity check matrix (PCM). For a
codeword to be valid, it must satisfy the set of all m parity
checks. In Figure 2 an example PCM for a (7,4) LDPC code
is given. ``1" in a position Hi,,j of this matrix means that a
particular bit participates in a parity check equation. For
example, in the first row the bits at positions

0b , 2b ,
3b ,

4b

participate in the computation of the parity check 0c , that is,

43200 = bbbbc  , where  represents the exclusive-OR

operation.
Each parity check matrix can be represented by its

corresponding bipartite graph (Tanner graph) [13]. The
Tanner graph corresponding to an (n, k) LDPC code consists
of n variable (bit) nodes (VN) and knm = check nodes
(CN), connected with each other through edges, as shown in
Figure 2. Each row in the parity check matrix represents a

parity check equation ic , 10  mi , and each column

represents a coded bit jb , 10  nj . An edge exists

between a CN i and VN j, if the corresponding value Hi,j is
non-zero in the PCM.

Usually, iterative Message Passing Algorithms (MPA)
[14] are used for decoding of the LDPC codes. During the
decoding specific messages are exchanged among the nodes
through the edges. The messages represent the log-likelihood
ratios (LLRs) of the codeword bits based on the channel
observations [14]. The algorithm starts with the so-called
intrinsic LLRs of the received symbols based on the channel
observations. Starting with the intrinsic LLR values, the
algorithm iteratively updates the extrinsic LLR messages
from the check nodes to variable nodes and from the variable
nodes to check nodes and sends them among the VNs and
CNs along the corresponding Tanner graph edges. If after
several iterations the parity check equation is satisfied, the
decoding stops, and the decoded codeword is created and
considered to be a valid codeword. Otherwise, the algorithm
further iterates until a given maximum number of iterations is
reached. The main decoding steps of the MPA algorithm are
graphically represented in Fig. 3. Since the Tanner graphs
corresponding to practical LDPC codes of the newest

Fig. 1: LDPC encoding and decoding process

Jóźwiak et al, Quality-Driven Methodology ….

communication system standards involve hundreds variable
and check nodes, and even more edges, LDPC decoding
represents a massive computation and communication task.
Moreover, the modern communication system standards
require very high throughput in the range of Gbps and above,
for applications like digital TV broadcasting, mmWave
WPAN, etc. For the realization of the so high throughput
complex highly parallel hardware accelerators are necessary.

In many practical MPA algorithms, the variable node
computations are implemented as additions of the variable
node inputs and the check node computations as log or tanh
function computation for each check node input and addition
of the results of the log/tanh computations. In some
simplified practical algorithms, the check nodes just compare
their inputs to find the lowest and second lowest value. Since
each node receives several inputs, the basic operations
performed in nodes are the multi-input additions or multi-
input comparisons. In the corresponding accelerator, the
spectrum of possible implementations of each of these multi-
input operations spans between the two extremes of a fully
serial slow processing in a simple two-input
adder/comparator to a fully parallel fast processing in a
complex multi-input parallel adder/comparator. When the
variable nodes perform their computations the check nodes
are waiting on the computation results and vice versa, but all
nodes of a given kind, i.e. all the variable nodes or all the
check nodes, may perform their computations in parallel. If
all the nodes of a given kind would actually perform their
computations simultaneously, this would require a complex
parallel access to the memories of all nodes of the opposite
kind, and could only be realized with a very distributed
memory structure and very complex and expensive
interconnection structure. In contrary, performing the
computations corresponding to different nodes fully serially

can requires just one memory access at a time and result in
reasonably simple corresponding memory and
interconnection structures.

Summing up, when considering the hardware
acceleration for LDPC decoding, the possible micro-
architectures span the full spectrum from a fully serial to a
fully parallel, and the possible macro-architectures of the
multi-accelerator structures span the full spectrum from a
fully serial [17] to a fully parallel [18], with large variety of
partially parallel architectures [19]-[22] between them. The
large variety of possible partially parallel architectures is due
to the ability of (partial) parallelism exploitation at two
levels: micro-architecture level (where the internal
architecture of an elementary accelerator at the register
transfer level (RTL) can be parallel), and macro-architecture
level (where complex multi-accelerators can be build of the
elementary accelerators. At the macro-architecture level, the
variable and check nodes and their respective computational
processes are mapped to the corresponding variable node
(VNP) and check node (CNP) processing units (PUs),
respectively. At the micro-architecture level, both VNP and
CNP computations can be realized through a (partially)
parallel or serial computation process implemented in an
elementary PU, in which (a number of) inputs of the VN or
CN are processed simultaneously or one by one, respectively.
The PUs micro-architecture has a huge impact on the
accelerator’s throughput, because these units constitute the
computational kernels and determine the accelerator’s
operating frequency. Also the mapping strategies of the
variable and check nodes to their respective VNP and CNP
elementary processors vary from one architectural choice to
another and there are many various mapping possibilities for
the partially parallel architectures.

Also, complex tradeoffs are possible between the
parallelism and resources at the micro-architecture level, and
parallelism and resources at the macro-architecture level.
Moreover, changing the level of parallelism for computations
in the micro- or macro-architecture of the LDPC accelerator
requires a corresponding change of the memory and
communication structure. Thus, the computation, memory
and communication architectures are strictly interrelated and
cannot be designed in separation. The large number of
possible macro-architecture/micro-architecture combinations
and related node mappings leads to a large number of various
tradeoff points in the LDPC accelerator design space
representing various accelerator architectures with different

Fig. 3: Decoding flow diagram representing the main
steps of MPA algorithm

Fig. 2: PCM for a (7,4) LDPC code and its corresponding Tanner graph, where }....{ 60 bb represents variable (bit) nodes,

}....{ 30 cc represents check nodes and }.....{ 60 II represents the input intrinsic channel information.

Jóźwiak et al, Quality-Driven Methodology ….

characteristics. To arrive at high-quality accelerator designs,
the accelerator design space exploration is necessary in
which a substantial set of the most promising of these
architectures will be constructed and analyzed, and the best
of them will be selected for further analysis, refinement and
actual implementation. As explained in Section 2, to perform
the design space exploration a new adequate design
methodology is necessary.

4. Quality-driven accelerator design methodology
for demanding applications

In this section we propose and discuss an accelerator
design methodology which addresses the issues of accelerator
design for demanding applications and satisfies the
requirements of an adequate accelerator design considered in
Sections 2 and 3. This methodology accounts for the micro-
architecture synthesis of basic accelerators, as well as, for the
macro-architecture synthesis of the multi-accelerator
structures. The new methodology considers the macro-
architecture and micro-architecture synthesis, as well as, the
computing, memory and communication structures’ synthesis
as one coherent complex task of the accelerator architecture
synthesis, and not as several separate tasks, as in the state-of-
the-art methods. This allows for an adequate resolution of the
strong interrelationships between the micro- and macro-
architecture, and computation unit, memory and
communication organization, as well as, for an effective
tradeoff exploitation regarding the effectiveness and
efficiency of the micro- and macro-architecture, and of their
modules.

The methodology is quality-driven and model-based. It
builds on the idea formulated by the first author of this paper
[3] that system design is actually about a definition of the
required quality, in the sense of a satisfactory answer to the
questions: what quality is required and how can it be
achieved? Consequently, quality-driven design methods and
tools are necessary to ensure that our systems will represent
the actually required quality. Therefore, the design process
for demanding hardware accelerators introduced and
discussed here is a specific realization of the quality-driven
design process proposed and discussed in [3]. In order to
bring the quality-driven design into effect, quality has to be
modeled, measured and compared. To enable it, the
following generic quality definition has been proposed in [3]:
Quality of a purposive systemic solution is its total
effectiveness and efficiency in solving the problem the
solution is required for. Effectiveness is the degree to which a
solution attains its goals. Efficiency is the degree to which a
solution uses resources in order to realize its aims. In turn,
the effectiveness and efficiency can be expressed in terms of
measurable parameters, and in this way quality can be
modeled and measured. Design space exploration with usage
of well-structured quality models makes us possible to limit
the scope of subjective design decision making and enlarge
the scope of reasoning-based decision making with open and
rational procedures which can be computerized. In particular,
quality can be modeled in the form of multi-objective
decision models, being partial and abstract (i.e. reduced to the
relevant and/or feasible concerns and precision levels)

models of the required quality, expressed in the decision-
theoretical terms. Multi-objective decision models, together
with methods and tools for the estimation of the design
parameters of these models related to the relevant design
aspects and performances, enable application of the multi-
objective decision methods for construction, improvement
and selection of the most promising solutions [3].

A very important aspect of the quality-driven system
design is design reuse, because it simultaneously enhances
the system quality (due to the “maturity” of the reused
designs) and the development efficiency (due to reuse of
results of some development phases that are not necessary to
be repeated). Therefore, our accelerator design methodology
exploits a mixture of design reuse and synthesis. Generic
system solutions, and especially generic system platforms for
particular problem classes and generic architecture templates
being their models, are among the major enablers of an
adequate mixture of design reuse and synthesis. Since the
generic templates are pre-designed based on the application
class analysis, they can be reused to organize, direct and
speedup the accelerator development process for each
specific application of the class. Since they are generic, they
and their parts can be adequately instantiated to (better) suit a
particular application of a given class, but also some new
application-specific modules may be added. The general form
of a generic template constrains the solution search space to
such a degree that the construction of particular solution
instances for particular applications can be efficiently
performed through an appropriate instantiation of the generic
architecture template, and computation process scheduling
and mapping on the instance of the template [3][4]. More
general templates can adequately support larger application
classes, which makes them better economically justified, as
their non-recurring engineering (NRE) costs can be shared by
more applications. On the other hand, more specific
templates can be more effective and efficient in serving a
particular application. The generic template based system
approach to application-specific system development is thus
well motivated both from the technological and economical
viewpoint.

For the reasons discussed above, our accelerator design
methodology adopts the quality-driven model-based design
exploration and architecture synthesis approach proposed
by the first author of this paper [3], and exploits the concept
of generic architecture template. The quality of the
accelerator required is modeled in the form of its design
requirements involving the demanded accelerator behavior,
and the structural and parametric constraints, objectives and
tradeoffs to be satisfied by its design. The behavioral,
structural and parametric requirements impose limitations on
the structure of a required accelerator solution, but they do it
in different ways. Structural requirements define the
acceptable or preferred accelerator structures directly, by
limiting them to a certain class or imposing a preference
relation on them. Parametric requirements define the
structures indirectly, by requiring the structures to have
specific physical, economic or other properties (described by
values of some parameters) that fulfill given constraints and

Jóźwiak et al, Quality-Driven Methodology ….

satisfy stated objectives. Behavioral requirements also define
the structures indirectly, by requiring the structures to expose
a certain externally observable behavior that realizes the
required behavior.

Accelerator architecture synthesis consists in the creation
of an accelerator structure specification at the architecture
level that supports the realization of the accelerator’s
behavior as specified by its behavioral requirements, and
fulfills the structural and parametric requirements to a
satisfactory degree. This structural specification defines:
- a set of architectural structural resources (i.e. computation,

memory and communication resources),
- an exact composition of the architectural resources to form

the architecture platform, and
- a corresponding mapping of the required computation

processes on the so constructed architecture platform and a
schedule of the computation processes.

To perform the accelerator architecture exploration and
synthesis effectively and efficiently, the original accelerator
requirements have to be analyzed and a partial (reduced to
only certain architecture related concerns) and abstract
(reduced to the necessary and/or possible precision level)
architecture-level model of the requirements being adequate
for the architecture design issue has to be constructed. The
actual accelerator architecture exploration starts with such an
abstract model of the architecture design issue composed
of:
- an abstract system behavior model representing a system

of computations that have to be realized;
- an abstract accelerator hardware platform model

representing selected generic architecture templates; and
- an abstract decision model composed of a set of

constraints, objectives and trade-off preferences related to
all accelerator characteristics important for the architecture
synthesis issue.

The decision model defines how the hardware resources and
the mapping and scheduling of the computational

components onto the hardware resources are constrained and
interrelated, and represents the designer’s preferences and
aspirations. Its constraints and preferences have to be
fulfilled to a satisfactory degree by each acceptable
architecture supporting the required computational processes.
 Based on the analysis results of the so modeled required
quality, the selected abstract generic architecture templates
are adequately instantiated and used to design space
exploration that aims at analysis of various architectural
choices and macro-/micro-architecture tradeoffs, and finally,
at the construction of one or several most promising
accelerator architectures supporting the required behavior
and satisfying the demanded constraints and objectives.
During the design space exploration, the system of
computations represented by the application behavior model
has to be appropriately distributed over the structure of
modules of each proposed instance of the generic architecture
template and scheduled, to define an actual system
architecture that is required to satisfy the constraints and
optimize the objectives of the quality model, in the context of
specific trade-off preferences between the objectives. Since
the accelerator architecture synthesis is a complex process
involving joint micro- and macro-architecture synthesis of
combined processing, memory and communication
structures, an adequate design space exploration will usually
require re-iterations and refinements. In result of the iterative
design space exploration, one or more satisfactory
application-specific architectures are constructed, and after
their further analysis, and possible further refinement and
optimization, one of them is selected to become the actual
accelerator architecture. This way the quality-driven
template-based design space exploration helps to arrive at
adequate combinations of architectural choices for the design
of a high quality accelerator for a particular set of application
requirements. According to our knowledge, the so formulated
accelerator design problem and its proposed above solution
concept are not yet explored in any of the previous works

Fig. 4: Example of a generic architecture template for LDPC decoding accelerators

Jóźwiak et al, Quality-Driven Methodology ….

related to hardware accelerator design.
In more precise terms, our quality-driven model-based

accelerator architecture design method involves the
following core activities:
- design of a pool of generic architecture platforms and

their main modules, and platform modeling in the form
of an abstract architecture template (once for an
application class)

- abstract requirement modeling (for each particular
application),

- generic architecture template and module instantiation
(for each particular application),

- computation scheduling and mapping on the generic
architecture template instance (for each particular
application and template instance)

- architecture analysis, characterization, evaluation and
selection (for each constructed architecture),

- architecture refinement and optimization (processing,
interfacing, and memories abstraction refinement and
optimization – for the selected architectures only).

To perform the accelerator architecture exploration and

synthesis effectively and efficiently, a pool of generic
architecture templates corresponding to a given application
class and their main resources (processors, memories and
communication resources) are developed and modeled in
advance. The generic architecture templates and units are
pre-designed by analyzing various applications of this class,
and particularly, analyzing the applications’ required
behavior, and ranges of their structural and parametric
demands. Each generic architecture template specifies several
general aspects of the modeled architecture set, such as
presence of certain modules types and the possibilities of the
modules’ structural composition, and leaves other aspects
(e.g. the number of modules of each type or their specific
structural composition) to be derived through the design
space exploration in which a template is adapted for a
particular application. To prepare an adequate set of
templates and models of their basic units, a significant
analysis of the application class and possible corresponding
conceptual accelerator designs is necessary. In fact, the
generic templates represent generic conceptual accelerator
designs which become actual designs after adequate further
template instantiation, refinement and optimization. The

Fig. 5: Architecture exploration framework of the proposed accelerator design methodology

Jóźwiak et al, Quality-Driven Methodology ….

significant analysis and design effort required to design the
architecture templates is however compensated due to
enabling an effective and efficient design space exploration
when using the templates. Fig. 4 shows an example of a
generic architecture template for an LDPC decoding
accelerator prescribing the presence and general structural
organization of the architectural resources. It involves
parameterized elementary VNP and CNP processors and
memories, configurable interconnects between the processors
and memories, ROM that can be configured to particular
PCM, Hard Decision and Parity Check Unit, as well as, the
Main Controller and Channel I/O Interface. Different
instances of the generic architecture templates and their
processing, memory and communication modules define
different specific accelerators. Also, the original accelerator
requirements, that may be very complex and include many
details not relevant for architecture synthesis, have to be
analyzed, and a much simpler abstract model of the
behavioral and parametric requirements being adequate for
the architecture design issue has to be constructed to enable
an effective and efficient accelerator architecture exploration.
The actual architecture exploration starts with such abstract
model of the architecture design issue constructed in advance
(see Fig. 5).

To start the actual architecture exploration and synthesis
process, the abstract behavioral and parametric requirements
of a given application are analyzed to decide the most
promising instantiations of the most promising generic
templates and their resources (see Fig. 5). Based on this
analysis, the designer makes a proposal of one or more
promising generic architecture template instances and their
resource allocation that are expected to be adequate to realize
the required accelerator behavior and satisfactory fulfill the
parametric and structural requirements. His decision is
implemented through a corresponding instantiation of the
generic architecture template and of its modules. Moreover,
the network of computations represented by the accelerator
behavior model is appropriately distributed over the structure
of modules of each of the promising instances of the generic
architecture templates and scheduled, when observing the
parametric constraints, objectives and trade-off preferences,
to define one or more actual accelerator architectures that
satisfy the specific (structural, physical, etc.) hard constraints
and optimize the objectives of the quality model. Each actual
accelerator architecture is defined through the selected
template configuration (i.e. the selection and
interrelationships of modules of a particular template),
template module configuration, as well as, assignment of the
required computations to the template modules and their
schedule. The in this way constructed architecture is
subsequently examined and analyzed to check to what degree
the constraints, objectives and preferences are satisfied, and
this way, to provide feedback on the exploration result to the
designer. In this architecture synthesis process, both the
available accelerator resources, and the objectives,
constraints and trade-off preferences are imposed by the
designer. On the other hand, the mapping and scheduling
decisions determine the actual accelerator resource requests.

To be acceptable, the resource requests must match in a
satisfactory way the pool of the available resources, in the
light of the objectives, constraints and trade-off preferences.
If this is not the case, the designer may decide to propose
new promising template instances (e.g. with more or more
effective resources), create new more adequate units, modify
templates or create new templates, or even modify the design
requirements, and subsequently, to perform the next
exploration cycle. If the requirements are satisfactorily
fulfilled by one or more of the created this way architectures,
some of the satisfactory architectures are further analyzed,
refined and optimized, and finally, one of them is selected to
be the actual application-specific architecture instance for the
application considered (see Fig. 5). This way, the pool of
generic architecture templates and their corresponding
parameterized processing, memory and interconnect
resources available for a given class of applications is
adapted to a particular application characterized by its
particular set of behavioral and other requirements (see Fig.
5).

During the design space exploration two major aspects
of the accelerator design are considered and decided
concurrently: its macro-architecture and micro-architecture.
At the same time, the tradeoffs between these two aspects in
relation to the design quality metrics (such as throughput,
area, energy consumed, cost etc.) are analyzed and decided. It
is important to stress that these macro- and micro-architecture
decisions are taken in combination, because both the macro-
and micro-architecture decisions influence the throughput,
area, and other important parameters, but they do it in
different way and to different degrees. For instance, by a
limited area, one can use more elementary accelerators, but
with less parallel processing and related hardware in each of
them, or vice versa, and this can result in a different
throughput and different values of other parameters for each
of the alternatives. Therefore, during the design space
exploration several different promising combinations of the
micro- and macro-architectures are constructed and analysed.

To decide the most suitable architecture, the promising
architectures constructed during the design space exploration
are analyzed and characterized in relation to various metrics
of interest (such as throughput, area, energy consumption,
cost) and basic controllable system attributes affecting them
(e.g. number of accelerator modules of each kind, clock
frequency of each module, communication structures
between modules, schedule and binding of the required
behavior to the modules etc.), and the results of this analysis
are compared to the design constraints and optimization
objectives. This way the designer receives feedback
composed of a set of constructed architectures and important
characteristics of each of the architectures, showing to what
degrees the particular design objectives and constraints are
satisfied by each of the architectures. This feedback is used
by the designer to control the further progress of the
architecture exploration and synthesis process, and to decide
the most suitable architecture. If all the constraints and
objectives are met to a satisfactory degree by some of the
constructed architectures, the most suitable of the

Jóźwiak et al, Quality-Driven Methodology ….

architectures satisfying the requirements is selected, further
analyzed, refined and optimized to represent the actual
detailed design of the required accelerator. This way, the
architecture design space exploration results in creation of an
architectural structure that defines a specific composition of
the computation, memory and interconnection resources at
the macro- and micro-architecture level that supports the
application’s behavior required and satisfies its parametric
constraints and objectives.

5. Application to LDPC accelerator design
Currently, we are applying the accelerator design

methodology discussed above to the design of demanding
hardware accelerators for LDPC code decoders for some of
the newest demanding communication system standards. In
this process, we use generic architecture templates similar to
this shown in Fig. 5. The aim of this design process is to find
the best possible application specific accelerator architecture
for a particular LDPC application, through promising
instantiations of the generic accelerator architecture
templates, behavior mapping and scheduling on those
templates, and analysis of the this way constructed alternative
architectures. The required quality of the accelerator is
characterized by the LDPC code required to be decoded and
its associated parity check matrix representing the
accelerator’s required behavior, as well as, by a set of
parametric requirements related a. o. to the error correcting
performance, throughput, and accelerator area. The design
parameters that can be influenced and decided during the
design space exploration include the following:
- the algorithm to be used for decoding;
- the intrinsic and extrinsic messages bit-precision (when

accounting for the error-correcting performance needed in
the form of bit error rate);

- the maximum number of iterations and the stopping
criteria (dependent on the type of algorithm used);

- the accelerator operating frequency;
- the micro-architecture of the elementary processing units

(specifically, the parallelism level of the processing
units);

- the macro-architecture (specifically, the number of
processing units to be used and assignment of nodes to
processing units);

- the number, size, structure and organization of memory
modules;

- the kind and organization of interconnect resources and
switching network (e.g. logarithmic or barrel shifter,
Benes [15] or Omega [16] network).

Our first impression regarding the usefulness of the design
methodology proposed above to the accelerator design for the
LDPC decoding is positive. The actual implementation of the
methodology is not as difficult as it can appear when
considering the high problem complexity, and it results in an
affective and efficient design space exploration process
which enables us to construct and analyze several promising
LDPC decoding accelerator architectures in a short time.

5. Conclusion
This paper presented the results of our analysis of the

main problems that have to be solved in design of
accelerators for modern demanding applications,
demonstrated that the today’s high-level synthesis is not
sufficient to adequately support the design process of
complex hardware accelerators, formulated the main
requirements that have to be satisfied by an adequate
methodology of accelerator design for demanding
applications, and proposed a quality-driven model-based
accelerator design methodology which satisfies the
requirements. Currently, we are applying the methodology to
the design of hardware accelerators for LDPC code decoders
for some of the newest demanding communication system
standards. Our future research will involve application of this
methodology to design accelerators for several modern
applications.

9. References
[1] L. Jóźwiak, A. Douglas: Hardware Synthesis for

Reconfigurable Pipelined Accelerators, Proc. Of
ITNG’2008 – IEEE International Conference on
Information Technology: Mew Generations, Las Vegas,
NV, USA, April 7-9, 2008, IEEE Computer Society
Press, Los Alamitos, CA, USA, pp. 1123-1130.

[2] Y. Jan and L. Jóźwiak: CABAC Accelerator
Architectures for Video Compression in Future
Multimedia: A Survey, Proc. of SAMOS’2009 – 9th
International Workshop on Embedded Computer
Systems: Architectures, Modeling, and Simulation,
Samos, Greece, July 20-23, 2009, LNCS 5657,
Springer-Verlag, Berlin Heidelberg, Germany, pp. 24-
35.

[3] L. Jóźwiak: Quality-driven Design in the System-on-a-
Chip Era: Why and How? Journal of Systems
Architecture, Elsevier Science, Amsterdam, The
Netherlands, 2001, Vol. 47/3-4, pp. 201-224.

[4] L. Jóźwiak, N. Nedjah and M. Figueroa: Modern
Development Methods and Tools for Embedded
Reconfigurable Systems – a Survey, Integration – The
VLSI Journal, Elsevier Science, Volume 43, No 1,
January 2010, pp. 1-33.

[5] R. Schreiber at al: High-level synthesis of
nonprogrammable hardware accelerators, Proc. of
ASAP’2000, pp. 113–124.

[6] K. Kuchcinski, C. Wolinski: Global approach to
assignment and scheduling of complex behaviours
based on HCDG and constraint programming, Journal
of Systems Architecture, Vol. 49, 2003, pp. 489–503.

[7] S. Gupta, N. Dutt, R. Gupta, A. Nicolau, SPARK: A
high-level synthesis framework for applying
parallelizing compiler transformations, Proc. Int. Conf.
on VLSI Design, 2003, pp. 461–466.

[8] Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers:
Optimized generation of data-path from C codes for
FPGAs, Proc. DATE’05, 2005, pp. 112–117.

[9] M. Puschel at al: SPIRAL: Code generation for DSP
transforms, Proceedings of the IEEE, Vol. 93, No. 2,
2005, pp. 232–275.

Jóźwiak et al, Quality-Driven Methodology ….

[10] S. Sun, W. Wirthlin, M. J. Neuendorffer: FPGA
Pipeline Synthesis Design Exploration Using Module
Selection and Resource Sharing, IEEE Trans. on CAD,
Vol. 26, No.2, 2007, pp. 254–265.

[11] S,P Mohanty, N. Ranganathan, E. Kougianos, P. Patra,
P.: Low-Power High-Level Synthesis for Nanoscale
CMOS Circuits, Springer, 2008, pp. 1–298.

[12] Synfora PICO platform for accelerator synthesis from
C, http://www.synfora.com/.

[13] R. Tanner: A recursive approach to low complexity
codes, IEEE Trans. on Inf. Theory, 27(5), 1981, pp.
533-547.

[14] D.J.C. MacKay: Good error-correcting codes based on
very sparse matrices, IEEE Trans. on Inf. Theory,
45(2), 1999, pp. 399-431.

[15] G. Malema and M. Liebelt: Interconnection Network
for Structured Low-Density Parity-Check Decoders,
Proc. 2005 Asia-Pacific Conf. on Communications,
2005, pp. 537-540.

[16] M.M. Mansour and N.R. Shanbhag: High-throughput
LDPC decoders. IEEE Trans. on VLSI System, 11(6),
2003, pp. 976-996.

[17] E. Yeo, P. Pakzad, B. Nikolic and V. Anantharam:
VLSI Architectures for Iterative Decoders in Magnetic
Recording Channels, IEEE Trans. on Magnetics, 37,
2001, pp. 748-755.

[18] A. Darabiha, A.C. Carusone and F.R. Kschischang:
Multi-Gbit/sec low density parity check decoders with
reduced interconnect complexity, Proc. ISCAS’2005,
2005, pp. 5194-5197.

[19] K. Gunnam, G. Choi, W. Wang and M. Yeary: Multi-
Rate Layered Decoder Architecture for Block LDPC
Codes of the IEEE 802.11n Wireless Standard, Proc.
ISCAS’2007, 2007, pp. 1645-1648.

[20] K. Sangmin, G.E. Sobelman and H. Lee: Flexible
LDPC decoder architecture for high-throughput
applications, Proc. APCCAS’2008, 2008, pp. 45-48.

[21] L. Zhang, L. Gui, Y. Xu and W. Zhang: Configurable
Multi-Rate Decoder Architecture for QC-LDPC Codes
Based Broadband Broadcasting System, IEEE Trans. on
Broadcasting, 54(2), 2008, pp. 226-235.

[22] Z. Cui, Z. Wang and Y. Liu: High-Throughput Layered
LDPC Decoding Architecture, IEEE Trans. on VLSI
Systems, 17(4), 2009, pp. 582-587.

