A ferroelectric transparent thin-film transistor

Prins, M.W.J.; Grosse-Holz, K.-O.; Müller, G.; Cillessen, J.F.M.; Giesbers, J.B.; Weening, R.P.; Wolf, R.M.

Published in:
Applied Physics Letters

DOI:
10.1063/1.115759

Published: 01/01/1996

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
A ferroelectric transparent thin-film transistor

Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

(Received 3 January 1996; accepted for publication 12 April 1996)

Operation is demonstrated of a field-effect transistor made of transparant oxidic thin films, showing an intrinsic memory function due to the usage of a ferroelectric insulator. The device consists of a high mobility Sb-doped n-type SnO₂ semiconductor layer, PbZr₀.₂Ti₀.₈O₃ as a ferroelectric insulator, and SrRuO₃ as a gate electrode, each layer prepared by pulsed laser deposition. The hysteresis behavior of the channel conductance is studied. Using gate voltage pulses of 100 μs duration and a pulse height of ≥ 3 V, a change of a factor of two in the remnant conductance is achieved. The dependence of the conductance on the polarity of the gate pulse proves that the memory effect is driven by the ferroelectric polarization. The influence of charge trapping is also observed and discussed. © 1996 American Institute of Physics.

Field-effect transistors with a ferroelectric insulator have been the subject of numerous studies because of their memory function and non-destructive readout properties. Early works used a thin film of semiconductor material deposited on a bulk ferroelectric substrate. Since the seventies the research has been focused on integration with IC technology, 2,3 where a ferroelectric thin film is deposited on a semiconductor substrate. Only very recently the fabrication of a ferroelectric thin-film transistor has become feasible, where the ferroelectric as well as the semiconductor material are deposited as thin films. 4–7 Although this approach is technologically more demanding, it offers the advantage of flexibility with respect to the choice of substrate. In particular, the usage of an optically transparent substrate in combination with wide bandgap materials for the thin-film transistor gives interesting opportunities for optical applications, e.g., as on-screen electronic devices in displays, projectors and cameras.

In this letter, we report on the operation of a ferroelectric transparent field-effect transistor realized completely in oxidic thin films. The gate insulator is composed of a ferroelectric Pb(Zr,Ti)O₃ thin film, while the semiconductor channel consists of an antimony doped n-type SnO₂ film. Measurements are performed at ambient temperature and pressure. The device construction is illustrated in Fig. 1. The layers were deposited on a SrTiO₃ (100) substrate by pulsed laser deposition with the off-axis technique. 5,8 First, a 140-nm SrRuO₃ layer was grown and subsequently patterned by reactive ion etching in order to form the gate structures. Thereafter, in a single run 160-nm PbZr₀.₂Ti₀.₈O₃ and 110-nm SnO₂:Sb were deposited. By reactive ion etching, the semiconductor channels were defined and contact holes were made to the buried gates. Ferroelectric Pb(Zr,Ti)O₃ finds wide application (e.g., Refs. 9 and 10) due to its large remnant polarization (of the order of 10 μC cm⁻²) and low coercive field strength (between 10 and 10² kV/cm). The semiconductor material is doped with 220 μg antimony per gram of SnO₂ (equivalent to a dopant concentration of 8 × 10¹⁵ cm⁻³) and shows a textured (111) structure with a grain size of 30–60 nm. SnO₂ is a transparent semiconductor with an electron mobility as high as 240 cm² V⁻¹ s⁻¹ for bulk material. 11,12 However, in thin films the reported mobilities are about an order of magnitude lower, 11,13 a phenomenon associated with the presence of grain boundaries. The semiconductor material used for the transistor channel has a resistivity of the order of 1 Ω cm. We verified that the resistivity of undoped SnO₂ films is more than three orders of magnitude higher; hence, the free carrier density in our films is entirely supplied by the antimony dopant atoms. The negative temperature dependence of the resistivity confirmed the semiconductive character of the SnO₂. Hall measurements showed n-type conductivity, a carrier concentration of

![Diagram of the transistor](image)

FIG. 1. Picture and sketch of the transistor (top view and cross sectional view). The picture shows the text ‘solid state physics’ that is read through the device, so seen through the thin-film device and the SrTiO₃ substrate with a thickness of 1 mm. The picture was taken with interference contrast, in order to visualize the edges of the thin films. The picture size is 1.4 mm × 1.8 mm.
trode layer of SrRuO$_3$. By fabricating an all-oxide thin-film transistor with heavily doped SnO$_2$ for the gate electrode, we verified that the realization of a fully transparent thin-film transistor is possible.

Figure 2 shows the measured drain current (I_D) and the gate current (I_G) as a function of the gate voltage. Note that the current leaking through the ferroelectric insulator is more than two orders of magnitude smaller than the drain current, demonstrative of a proper transistor operation. By changing the band bending in the semiconductor, the gate voltage causes the drain-source channel conductance to be larger at a positive gate voltage (forward bias, channel enrichment) than at a negative gate voltage (reverse bias, channel depletion). As Fig. 2 shows, a change of the channel conductance is achieved of a factor of $I_{\text{max}}/I_{\text{min}} = 36 \mu A / 0.6 \mu A = 60$. This can be understood as follows. For a constant density of space charge eN_d, the width of the depletion region in the semiconductor is given by $[2\epsilon_r\epsilon_0V_{\text{bb}}/eN_d]^{1/2}$, where V_{bb} is the band bending potential. If we assume that the full gate voltage sweep induces a change of the band bending $V_{\text{bb}} = 4$ V and using a carrier concentration $N_d = 10^{18} \pm 0.5$ cm$^{-3}$, we find a change of the depletion width of 80\pm40 nm ($\epsilon_r = 10$). In other words, the large change of channel conductance is due to the fact that the change of the depletion width is comparable to the thickness of the semiconductor channel.

The memory function of this thin-film transistor is demonstrated by the hysteresis behavior of the drain current.16 The remnant channel conductance, i.e. the conductance at zero gate voltage, depends on the history of the gate voltage: the remnant conductance is large when a positive gate voltage has been applied (on-state) and small after a negative voltage (off-state). This proves that the memory effect is driven by the ferroelectric polarization, and is not a result of the injection of charge into the insulator layer (this issue is discussed in detail in Refs. 2 and 4). The voltage shift between the up-sweep and down-sweep is 1.6 V. This should be compared with 2d_fE_c, where d_f is the thickness of the ferroelectric layer and E_c its coercive field. Using $d_f = 160$ nm, we find a coercive field of 50 kV/cm. In order to verify that the hysteresis is due to the field effect, we measured the charge collected on the gate electrode as a function of the gate voltage (not shown) in a Sawyer-Tower measurement17; this revealed a hysteresis behavior with a remnant charge density of 10 μC cm$^{-2}$.

The switching characteristics of the transistor are depicted in Fig. 3, showing the time evolution of the remnant conductance of the source-drain channel. Gate voltage pulses with a duration of 100 μs and a pulse height of ± 3 V were used. A switching is observed with an on/off ratio close to a factor of 2.18 This can be compared with previous achievements in ferroelectric thin-film transistors: Seager et al.4 observed a memory effect that was dominated by charge injection and opposite to the ferroelectric polarization, while Watanabe5 showed a polarization-type memory effect of 5%, with gate voltage pulses of 7-V amplitude and 10-ms duration. We observed a substantial decrease of the on/off ratio with pulses shorter than 10 μs. This is not due to the ferroelectric material, because in Pb(Zr,Ti)O$_3$ the switching of polarization takes place on a nanosecond time scale.10 A speed limitation is given by the RC switching time constant, that is the product of the source-drain channel resistance ($\sim 10 \Omega$) and the gate capacitance (~ 0.3 nF). The theoretical limit to the device speed is given by $L^2/V\mu$,15 where L is the channel length, V is the applied voltage, and μ is the carrier mobility. As an example, using one volt, a mobility of 10 cm2 V$^{-1}$s$^{-1}$, and a channel length of 1 μm, a switching speed of 1 ns should be possible.

In addition to the switching behavior, a relaxation of the on-state and the off-state is observed in Fig. 3. The relaxation is of equal direction for the two states (toward a higher conductance) and the relaxation is of similar magnitude. It is well-known that the polarization of ferroelectric materials is partially volatile.10 However, a ferroelectric relaxation would lead to a reduction of the on-state conductance and an increase of the off-state conductance with time, in contrast to what is recorded in Fig. 3; in addition, we also observed the
relaxation for low voltages, when the ferroelectric material is hardly switched (low on/off ratio). Our observations point to the presence of electron trap states, that are filled by the gate current pulse. During the relaxation process, the liberation of trapped electrons leads to an increase of the free carrier density in the n-type channel. We verified experimentally that gate pulses of longer duration give stronger relaxation effects, as is expected for an increased amount of trapped charge. Also, the relaxation time decreased upon illuminating the sample with photons of sub-bandgap energy, which is another indication that gap states are involved. The trap states may be related to the inactive fraction of dopant atoms, or to structural defects at the grain boundaries in the semiconductor thin film.20 Summarizing, we have demonstrated the operation of an all-oxide transistor with the following features: (i) an all-thin-film design, (ii) the incorporation of a high mobility semiconductor like SnO\textsubscript{2}, (iii) an inherent memory function due to a ferroelectric insulator, (iv) a low switching voltage, and (v) optical transparency.

The authors thank P.W.M. Blom and L.F. Feiner for helpful discussions. E. Pastoor and M.H.J. Slangen are acknowledged for assisting with the measurements.

16Also the gate current exhibits hysteresis, due to the ferroelectric polarization and charging effects; for a discussion on polarization-dependent conduction through a ferroelectric system, see for example P.W.M. Blom, R.M. Wolf, J.F.M. Cillessen, and M.P.C.M. Krijn, Phys. Rev. Lett. 73, 2107 (1994); Y. Watanabe, Appl. Phys. Lett. 66, 28 (1995).
17C.B. Sawyer and C.H. Tower, Phys. Rev. 35, 269 (1930).
18Due to the time-dependence of the on- and the off-state (i.e. the relaxation effects due to charge trapping; see the following paragraph), the on/off ratio is smaller in Fig. 3 (time scale of minutes) than in Fig. 2 (taken on a time scale of seconds).
20The presence of traps in high mobility oxide semiconductor thin films (e.g. In\textsubscript{2}O\textsubscript{3} or ZnO) is for example discussed in Ref. 4 and: V. Srikant, V. Srikant, and D.R. Clarke, J. Am. Ceram. Soc. 78, 1931 (1995); 78, 1935 (1995).