Nonlinear Elasticity of Composite Networks of Stiff Biopolymers with Flexible Linkers

C. P. Broedersz,1 C. Storm,1,2 and F. C. MacKintosh1,*

1Department of Physics and Astronomy, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
2Department of Applied Physics and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

(Received 27 October 2007; published 11 September 2008)

Motivated by recent experiments showing nonlinear elasticity of in vitro networks of the biopolymer actin cross-linked with filamin, we present an effective medium theory of flexibly cross-linked stiff polymer networks. We model such networks by randomly oriented elastic rods connected by flexible connectors to a surrounding elastic continuum, which self-consistently represents the behavior of the rest of the network. This model yields a crossover from a linear elastic regime to a highly nonlinear elastic regime that stiffens in a way quantitatively consistent with experiment.

DOI: 10.1103/PhysRevLett.101.118103 PACS numbers: 87.16.Ka, 82.35.Pq, 87.15.La

The mechanical response of living cells depends largely on their cytoskeleton, a network of stiff protein polymers such as filamentous actin (F-actin), along with various associated proteins for cross-linking and force generation. In addition to their importance for cell mechanics, cytoskeletal networks have also demonstrated novel elastic properties, especially in numerous in vitro studies [1–6]. The cellular cytoskeleton, however, is an inherently composite structure, consisting of elements with highly varied mechanical properties, and there have been few theoretical or experimental studies of this aspect [7–11]. Recent experiments on F-actin with the physiological cross-linker filamin have demonstrated several striking features; while their linear modulus is significantly lower than for rigidly cross-linked actin systems, they can nonetheless withstand remarkably large stresses and can stiffen by a factor of 1000 with applied shear [7,9,12]. This behavior appears to result from the highly flexible nature of filamin, although the basic physics of such a network, in which the elasticity is dominated by cross-links, is not understood. Apart from their physiological importance, such networks suggest new principles that may be extended to new synthetic materials with designed cross-links [8].

Here we develop a theoretical model for composite networks of rigid filaments connected by flexible cross-linkers, in which the macroscopic network elasticity is governed by the cross-links. We examine this model in a limit in which the basic elastic element is a single rigid rod, directly linked by numerous compliant cross-linkers to a surrounding linear elastic medium. We show that such a network stiffens in a manner determined by the mechanics of individual cross-links, which we model both as linear springs with finite extension and also as wormlike chains. We analyze our model in both a fully 3D network as well as a simplified 1D representation, which already captures the essential physics of the nonlinear behavior. The finite extension ℓ_0 of the cross-links along with the length of the filaments/rods L implies that there exists a characteristic strain $\gamma_c \sim \ell_0/L$ for the onset of the nonlinear response of the network. Indeed, prior in vitro experiments, in which the length of the cross-linkers was varied [8], have reported this linear dependence on ℓ_0. We extend this model in a fully self-consistent manner, replacing the embedding medium by an effective medium whose elastic properties are determined by those of the constituent rods and linkers. This self-consistent model can quantitatively account for the nonlinear response found in prior experiments on actin-filamin networks [7,9].

In a flexibly cross-linked stiff polymer network, randomly oriented stiff filaments or rods are interconnected by relatively short but highly flexible cross-linkers (Fig. 1). The compliance of this network is dominated by the flexible cross-linkers, while the much stiffer filaments act mainly as a scaffold for the cross-linkers, ensuring rigidity of the network as a whole. Recent experiments have demonstrated that flexible biological cross-linkers such as filamin can be described as a semiflexible polymer using the

FIG. 1 (color online). Schematic figure of an isotropic stiff polymer network with highly compliant cross-linkers. The inset illustrates the proposed nonuniform deformation of the cross-linkers on a single filament in a sheared background medium.
The cross-linkers are characterized by their contour length ℓ_0 and persistence length ℓ_p [15]. A realistic force-extension curve of a typical biological cross-linker is shown as a solid black line in the inset in Fig. 2. It is instructive to simplify this curve by assuming linear response with a spring constant k_{cl} and a finite extensibility ℓ_0. This simplification retains the essential features and is shown in Fig. 2 as a dashed blue line. We refer to this as simple cross-link behavior.

To determine the elasticity of the network, we use an effective medium approach and divide the network into two mechanically connected subsystems. The first consists of a stiff filament of length L decorated by n flexible cross-linkers, which we refer to as a hairy rod (HR). The other is the network connected to it, which we treat as an elastic continuum. Although the medium is assumed to deform affinely, we allow the local strain of the cross-linkers to depend on their position on the HR. By averaging over all orientations, we may express the macroscopic stress in terms of the strain in a single HR connected to a medium, which is subject to a 1D strain ϵ along its backbone. The tension τ in the center of this HR is the sum of the forces exerted by all cross-linkers on one-half of the rod. To calculate these forces, we treat the cross-linker as a spring connected in series with the medium, which we describe with a spring constant K_{EM}. We are primarily interested in densely cross-linked networks for which $K_{EM} \gg k_{cl}$. The extension of the cross-linker-medium system is given by ϵx at a distance x from the center of the rod. If the cross-linkers are homogeneously distributed over the rod with a high density n/L, we can write the sum over forces as an integral:

$$\tau(\epsilon) = n \frac{\ell_0}{L} \int_{0}^{\ell_0/\epsilon} dx \frac{k_{cl}K_{EM}}{k_{cl} + K_{EM}} \epsilon x + n \frac{\ell_0}{L} \int_{\ell_0/\epsilon}^{L/2} dx \frac{k_{cl}K_{EM}}{k_{cl} + K_{EM}} \ell_0 + K_{EM}(\epsilon x - \ell_0)$$

(1)

For strains $\epsilon \leq \ell_0/(L/2)$, only the first integral is present and the integration extends to $L/2$. In this case, the tension depends linearly on the strain. Using Eq. (1), we compute the 1D modulus $G_{1D} = \tau/\epsilon$, which is shown as a dashed blue line in Fig. 2. For small strains, the system is linearly elastic with $G_{1D} = \frac{1}{8} n \frac{k_{cl}K_{EM}}{k_{cl} + K_{EM}} L$. Above a threshold strain $\ell_0/(L/2)$, a crossover occurs to a second linear regime in which G_{1D} asymptotically approaches $\frac{1}{8} n K_{EM} L$.

The nonlinear response of a cross-linker is more realistically modeled with the WLC model [14] (Fig. 2). We calculate the tension in a rod with WLC cross-linkers analogously to Eq. (1). The 1D modulus G_{1D} is shown as a dashed-dotted purple line in Fig. 2. Though quite similar to the simple cross-linker model, the more realistic force-extension curve has introduced a considerable smoothing of the crossover resulting in a gradual onset of nonlinear behavior of the HR with WLC cross-linkers. Nevertheless, the characteristic strain ϵ_c for the nonlinear behavior is proportional to ℓ_0/L independent of the exact nonlinear response of the linkers.

Using the 1D model presented above, we can compute the macroscopic stress of a network. A 3D isotropic network with a polymer length density ρ is modeled by an effective medium consisting of randomly oriented HRs. We can compute the macroscopic stress σ and shear modulus $G = \sigma/\gamma$ by averaging over all orientations [2,6]. The shear modulus is shown in Fig. 2 for the simple cross-linkers and for the WLC cross-linkers. The 3D curves are largely similar to the 1D results, save for a factor of 2 shift, which may be understood by noting that the rods at a 45° angle to the stress plane, which bear most of the stress, experience an extensional strain ϵ of $\gamma/2$.

At large strains, many of the cross-linkers are extended well into their nonlinear regimes, it is no longer realistic to assume a linear background medium. To address this, we shall now require the elasticity of the background medium to self-consistently represent the nonlinear elasticity of its constituent HRs.

Under strain the cross-links deform the surrounding elastic medium. The resulting longitudinal displacement $d\ell$ of the medium leads to a restoring force per unit length along the rod given approximately by the shear stiffness $d\sigma/\gamma \times d\ell$ [16]. The shear modulus of the medium depends on the density ρ of rods and the longitudinal stiffness $d\sigma/d\epsilon$, where ϵ is the 1D extensional strain of the medium along the rod:

![Image](image-url)
\[
\frac{d\sigma}{d\gamma} = \mathcal{A} \rho \frac{d\tau}{d\epsilon}.
\]

Here \(\mathcal{A}\) is a dimensionless geometric factor that depends on the architecture of the network. For an isotropic network in 3D, this is \(1/15\). (We note that this is a small-strain approximation and that \(\mathcal{A}\) will be different for anisotropic networks.) Thus, the effective stiffness \(K_{EM}\) per cross-link is given by

\[
K_{EM} = \mathcal{A} \rho \frac{L}{n} \frac{d\tau}{d\epsilon}.
\]

When subject to a shear strain \(\gamma\), the resulting stress \(\sigma\) within a network of rods can be expressed in terms of the tension \(\tau\) in each rod, which depends on its orientation relative to the shear plane. It is given by

\[
\tau(\epsilon) = \frac{n}{L} \int_0^{L/2} dx' \left(\int_0^{\epsilon} d\epsilon' \frac{d\tau}{d\epsilon'} k_{cl}(x',\epsilon') \mathcal{A} \rho \frac{L}{n} \frac{d\tau}{d\epsilon} \left(\frac{x'}{L} \right) \right),
\]

where \(k_{cl}(\delta \ell)\) is the derivative of the force-extension curve of the cross-linker. Equivalently, we may write for \(\tau(\epsilon)\)

\[
2 \frac{d\tau}{d\epsilon} + \epsilon \frac{d^2\tau}{d\epsilon^2} = \begin{cases}
\frac{nL}{4} k_{cl}(\ell/2) \mathcal{A} \frac{d\tau}{d\epsilon} & \text{if } \epsilon < \frac{l_0}{L}, \\
\frac{1}{\mathcal{A}} \rho \frac{L^2}{n} \frac{d\tau}{d\epsilon} & \text{if } \epsilon \geq \frac{l_0}{L}.
\end{cases}
\]

We first investigate the properties of this model using the simple force-extension curve (see inset in Fig. 2). For a densely cross-linked network, we find a linear regime below \(\gamma_c = \ell_0 / L\). For larger strains, the system enters a highly nonlinear regime for which

\[
2 \frac{d\tau}{d\epsilon} + \epsilon \frac{d^2\tau}{d\epsilon^2} \sim \tau^{1-1/[1/4, \mathcal{A} \rho L^2 - 1]}.
\]

This is in marked contrast with the linear medium model in which there is only a crossover between two distinct linear regimes.

A real network with compliant cross-linkers is more realistically modeled by solving Eq. (5) (numerically) using the WLC force-extension curve for the cross-linkers. The shear modulus in this case, computed exactly as in Eqs. (4) and (5), is given by

\[
K/G_0 = \frac{\tau^{1-1/[(1/4) \mathcal{A} \rho L^2 - 1]}}{\gamma^{10}}, \quad \gamma = 2 \ell_0 / L.
\]

This is in marked contrast with the linear medium model in which there is only a crossover between two distinct linear regimes.

A real network with compliant cross-linkers is more realistically modeled by solving Eq. (5) (numerically) using the WLC force-extension curve for the cross-linkers. The shear modulus in this case, computed exactly as in Eqs. (4) and (5), is given by

\[
K/G_0 = \frac{\tau^{1-1/[(1/4) \mathcal{A} \rho L^2 - 1]}}{\gamma^{10}}, \quad \gamma = 2 \ell_0 / L.
\]

This is in marked contrast with the linear medium model in which there is only a crossover between two distinct linear regimes.

A real network with compliant cross-linkers is more realistically modeled by solving Eq. (5) (numerically) using the WLC force-extension curve for the cross-linkers. The shear modulus in this case, computed exactly as in Eqs. (4) and (5), is given by

\[
K/G_0 = \frac{\tau^{1-1/[(1/4) \mathcal{A} \rho L^2 - 1]}}{\gamma^{10}}, \quad \gamma = 2 \ell_0 / L.
\]

This is in marked contrast with the linear medium model in which there is only a crossover between two distinct linear regimes.

A real network with compliant cross-linkers is more realistically modeled by solving Eq. (5) (numerically) using the WLC force-extension curve for the cross-linkers. The shear modulus in this case, computed exactly as in Eqs. (4) and (5), is given by

\[
K/G_0 = \frac{\tau^{1-1/[(1/4) \mathcal{A} \rho L^2 - 1]}}{\gamma^{10}}, \quad \gamma = 2 \ell_0 / L.
\]

This is in marked contrast with the linear medium model in which there is only a crossover between two distinct linear regimes.

A real network with compliant cross-linkers is more realistically modeled by solving Eq. (5) (numerically) using the WLC force-extension curve for the cross-linkers. The shear modulus in this case, computed exactly as in Eqs. (4) and (5), is given by

\[
K/G_0 = \frac{\tau^{1-1/[(1/4) \mathcal{A} \rho L^2 - 1]}}{\gamma^{10}}, \quad \gamma = 2 \ell_0 / L.
\]

This is in marked contrast with the linear medium model in which there is only a crossover between two distinct linear regimes.

A real network with compliant cross-linkers is more realistically modeled by solving Eq. (5) (numerically) using the WLC force-extension curve for the cross-linkers. The shear modulus in this case, computed exactly as in Eqs. (4) and (5), is given by

\[
K/G_0 = \frac{\tau^{1-1/[(1/4) \mathcal{A} \rho L^2 - 1]}}{\gamma^{10}}, \quad \gamma = 2 \ell_0 / L.
\]

This is in marked contrast with the linear medium model in which there is only a crossover between two distinct linear regimes.

A real network with compliant cross-linkers is more realistically modeled by solving Eq. (5) (numerically) using the WLC force-extension curve for the cross-linkers. The shear modulus in this case, computed exactly as in Eqs. (4) and (5), is given by

\[
K/G_0 = \frac{\tau^{1-1/[(1/4) \mathcal{A} \rho L^2 - 1]}}{\gamma^{10}}, \quad \gamma = 2 \ell_0 / L.
\]
given by τ in Eqs. (4) and (5). The tension at a point x can be obtained by replacing the lower limit of the x' integral in Eq. (4) by x. The tension profile is parabolic below γ_c and quickly converges to a more flattened out profile in the nonlinear regime. We can use the tension profile to relate the maximum tension in a single HR to the macroscopic stress σ [23]. For typical experimental conditions in an actin-filamin gel [12], we estimate a maximum force on a single cross-link to be at most 5 pN for isotropic rods and of order 1 pN or less for oriented rods.

A feature shared by the linear medium model and the self-consistent model is the characteristic strain $\gamma_c \approx 4\ell_0/L$ for the onset of nonlinear response. The proportionality with ℓ_0 is consistent with the results of Wagner et al., where cross-linker length was varied, although they observed larger values of γ_c than expected either from our model or based on Refs. [7–9]. Recent experiments on actin-filamin networks also show a dependence of the critical strain that is approximately inverse in actin filament length L [24] in agreement with our results. This sensitivity of network response to filament length, both in experiments and in our model, appears to be one of the hallmarks of actin-filamin networks. On the one hand, this may explain the apparent difference between the critical strains reported in Refs. [7–9]. On the other hand, it also suggests that it may be more important to directly measure the filament length distribution in such experiments than in other similar in vitro studies. In Wagner et al., for instance, the filament length was not measured but was inferred from prior reports of the length dependence on the capping protein gelsolin [25].

In previous work, DiDonna and Levine have assumed a sawtooth force-extension curve for the cross-linkers to mimic domain unfolding. They report a fragile state with shear softening when an appreciable number of cross-links are at the threshold of domain unfolding [10]. Our model is based on the stiffening of the critical strain at a critical strain that is approximately inverse in actin filament length L [24] in agreement with our results. This sensitivity of network response to filament length, both in experiments and in our model, appears to be one of the hallmarks of actin-filamin networks. On the one hand, this may explain the apparent difference between the critical strains reported in Refs. [7–9]. On the other hand, it also suggests that it may be more important to directly measure the filament length distribution in such experiments than in other similar in vitro studies. In Wagner et al., for instance, the filament length was not measured but was inferred from prior reports of the length dependence on the capping protein gelsolin [25].

We thank G. Koenderink and K. Kasza for useful discussions. This work was funded in part by FOM/NWO.

References:

[16] The longitudinal elastic restoring force per unit length of a rod with aspect ratio L/a is approximately $2\pi G/\log(L/a)\delta t$; here we ignore the log term.