An ultra-low-energy/frame multi-standard JPEG co-processor in 65nm CMOS with sub/near-threshold power supply.

Citation for published version (APA):

DOI:
10.1109/ISSCC.2009.4977350

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 18. Oct. 2023
Many digital ICs can benefit from sub/near threshold operations that provide ultra-low-energy/operation for long battery lifetime. In addition, sub/near threshold operation largely mitigates the transient current hence lowering the ground bounce noise. This also helps to improve the performance of sensitive analog circuits on the chip, such as delay-lock loops (DLL), which is crucial for the functioning of large digital circuits. However, aggressive voltage scaling causes throughput and reliability degradation. This paper presents SubJPEG, a state of the art multi-standard 65nm CMOS JPEG encoding co-processor that enables ultra-wide VIN scaling. With a 0.45V power supply, it delivers 15fps 640×480 VGA application with only 1.3pJ/operation energy consumption per DCT and quantization computation. This co-processor is very suitable for applications such as digital cameras, portable wireless and medical imaging. To the best of our knowledge, this is the largest sub-threshold processor so far.

The architecture of SubJPEG is shown in Fig. 8.1.1. The design is fully compliant with the JPEG encoder baseline standard [1]. Asynchronous FIFOs (AFFIs) are located at the front-end of the data-path to enable an flexible interface to standard bus interfaces such as PCI/PICI-X/PCI-Express. For each frame, the external main CPU issues a command to the configuration register file of the JPEG processor. The command includes the source data start address/length, destination data start address, YUV sampling ratio, programmable quantization table coefficients, etc. SubJPEG accommodates two command slots in the configuration register file so as to minimize the inter-frame configuration latency. The JPEG data-path has three main stages: (1) 2D-DCT transformation, (2) Quantization, and (3) Huffman encoding. A pair of DCT and Quantization modules is denoted as an “engine”. SubJPEG has 4 engines capable of pulling up signals from sub-threshold VDDL to VDDH (~ VDDL+300mV). The 2nd stage level shifting is performed through feedback structured level-shifters from VDDL to 1.2V I/O pad.

The chip is fabricated in a 65nm 7-layer standard VDD CMOS process. A micro-graph of the chip is shown in Fig. 8.1.7. The core area is 1.4×1.4mm² without pads. Fig. 8.1.5 shows the waveforms of some control signals from the logic analyzer. Also shown is the measurement result for the Vf balancer. Measurements of energy and speed performance are summarized in Fig. 8.1.6.

Acknowledgements:
The authors thank Leo Sevat and Maurice Meijer for the support during backend and testing of the chip.

References:
Figure 8.1.1: SubJPEG system block diagram.

Figure 8.1.2: Configurable \(V_T \) Balancer.

Figure 8.1.3: Improving sub-threshold drivability by exploiting \(V_T \) mismatch between parallel transistors.

Figure 8.1.4: Illustration of prohibited structures in sub-threshold library and 2-stage level shift scheme.

Figure 8.1.5: Waveforms from logic analyzer and \(V_T \) balancer measurements from oscilloscope.

Figure 8.1.6: (a) Energy/operation for each engine, (b) Throughput for 4 engines and possible real-time image applications.

Please click on paper title to view Visual Supplement.
Figure 8.1.7: Die micrograph and core layout of SubJPEG test chip in 65nm CMOS.