A novel dilatometer for the investigation of PVT-T-behavior of semi-crystalline polymers
van der Beek, M.H.E.; Peters, G.W.M.; Meijer, H.E.H.

Published: 01/01/2001

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
A Novel Dilatometer for the Investigation of PVT-\dot{T}-$\dot{\gamma}$ Behavior of Semi-Crystalline Polymers

M.H.E. van der Beek, G.W.M. Peters, H.E.H. Meijer
Eindhoven University of Technology, Department of Mechanical Engineering

Introduction
The heterogeneous microstructure of semi-crystalline poly-mers strongly depends on the thermal-mechanical history experienced during processing. For the prediction of material properties that are closely related to this microstructure, such as specific volume (figure 1), a realistic computational model is required. Therefore, a novel experimental set-up is developed that provides the input data for this model as a function of the thermal-mechanical history.

Methods
A dilatometer based on the principle of confined compression is designed to study the influence of the thermal-mechanical history on specific volume.

Design Considerations
A thermal-mechanical analysis performed with the finite element package MARC served as a basis for the detailed design of the dilatometer.

Conclusions
A dilatometer is designed to measure specific volume as a function of thermal-mechanical history that is characterized by:

- maximum applicable sample pressure $P = 10^3$ [bar]
- cooling rates can be reached to $\dot{T} = O(10^2)$ [K/s]
- uniform sample deformation with $\dot{\gamma} = O(10^3)$ [1/s]

References: