Failure of SAC solder under thermal cycling

Matin, M.A.; Vellinga, W.P.; Geers, M.G.D.

Published: 01/01/2004

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 11. Dec. 2018
Failure of SAC solder under thermal cycling

M.A. Matin, W.P. Vellinga, and M.G.D. Geers
Eindhoven University of Technology, Department of Mechanical Engineering

Introduction

β-Sn in eutectic Sn-Ag-Cu (SAC) solder exhibits anisotropy in its elastic and thermal expansion properties that may induce a significant amount of stress at Sn-grain boundaries during thermal cycling [1]. Damage can initiate at boundaries with maximum induced normal/shear stress. Therefore, details investigation of failure in solder joints under thermal cycling has a paramount importance for the reliability concern of microelectronics devices.

Experimental techniques

Shown in Fig. 1 (a) is a solder joint (height = 0.3 mm, length = 5 mm) prepared using commercial solder pastes (Multicore Ltd., UK). Copper blocks of dimensions 25 mm \times 10 mm \times 1 mm were used as substrates.

The specimens were thermally cycled within three temperature ranges (ΔT) of 253 K to 353 K, 293 K to 353 K, and 253 K to 401 K using Linkam stage (Fig. 1 (b)). Backscatter-electron microscopy, polarizing light microscopy and orientation imaging microscopy (OIM) were performed for characterization purpose.

Results and discussion

Fig. 2 shows optical micrographs from an identical area of a solder interconnection before and after thermal cycling within 253 K to 353 K ($\Delta T = 100$ K). Cracks formation along grain boundary can be observed after thermal cycling (TC) (see Fig. 2 (b)).

BSE micrograph obtained from the same area after TC is presented in Fig. 3 (a). One can see localized damage along grain boundaries and near to the interface between solder and substrates. Another observation from a joint thermally cycled between 293 K to 353 K for 1000 cycles also shows sliding (SL)/separation (SP) of grain boundaries (see magnified image of marked area “2” in Fig. 3 (b)). Two arrows in the micrograph of magnified image of marked area “3” indicate propagation of microcracks that linked together. It also depicts some prominent shear bands.

Conclusions

Grain-boundary sliding/separation and shear band formation are the predominant damage phenomena in solder under thermal cycling. Amount of induced damage increases with increase in ΔT.

References:

PO Box 513, 5600 MB Eindhoven, the Netherlands