3D large scale simulation of a stented aortic heart valve

Citation for published version (APA):

Document status and date:
Published: 01/01/2009

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 20. Feb. 2019
The pressure on top & bottom sides of leaflets forms thin boundary layer along the fixed edges (Fig. 4), while on the belly region it takes moderate values.

Numerical approximation
New numerical techniques are developed to alleviate reported difficulties [1] associated with the accuracy and the stability of calculations at high Reynolds number in three dimensions:

- open inflow/outflow boundary conditions
- second order time integration scheme with automatic adaptation of the time step
- discontinuous Lagrange multipliers for matching the meshes of leaflets and blood & regions with different discretizations (typically 10^6 number of unknowns).

Introduction to the physical problem
The aortic heart valve (AHV) ensures unidirectional blood flow from the left ventricle to the aorta during the cardiac cycle (Fig. 1), while its proper function is essentially controlled by the surrounding hemodynamic environment (HE). Computational fluid dynamics (CFD) permit the Resolution of HE at the microscale, overcoming some of the inherent limitations of experimental techniques.

Objective of current work
To develop a new, efficient and robust finite element algorithm for the simulation of AHV, which can be used as:
- design tool for tissue engineering heart valves
- diagnostic tool for clinical applications

Physical model
Blood flows through a 3D stented AHV (Fig. 2) of mean diameter $w=24$ mm and total length $H=4w$, due to a time-varying pressure gradient. It also exhibits non-Newtonian behavior that is described with the Carreau-Yasuda model [2]. All leaflets are assumed to behave as incompressible neo-Hookean solids with constant density.

Numerical approximation
New numerical techniques are developed to alleviate reported difficulties [1] associated with the accuracy and the stability of calculations at high Reynolds number in three dimensions:

- open inflow/outflow boundary conditions
- second order time integration scheme with automatic adaptation of the time step
- discontinuous Lagrange multipliers for matching the meshes of leaflets and blood & regions with different discretizations (typically 10^6 number of unknowns).

Results
A global assessment of the blood-leaflets interaction is given in Fig. 3. The aortic leaflets move in response to blood flow. The opening procedure takes place in a symmetric manner, though the model is fully 3D.

Fig 1. A human heart and its semilunar valves

Fig 2. Schematic drawings of the model of the aortic valve

Fig 3. Snapshots from the deformation of the mesh due to the motion of the leaflets during the systolic phase

Fig 4. Distribution of the pressure on the aortic side of the leaflets during the systolic phase

Fig 5. Distribution of the streamwise (v_x), radial (v_r), azimuthal (v_θ) velocity components and the pressure of the blood across the outlet of the aortic root (Fig. 2)

Conclusions
- A new fully 3D algorithm has been developed for the simulation of the motion of the leaflets of the aortic valve at nearly physiological conditions ($Re_{peak}=2,000$).
- For first time, the true rheological behavior of the blood is taken into consideration.

References