Why is polystyrene brittle and polycarbonate though and what can we do about it?
Smit, R.J.M.; Brekelmans, W.A.M.; Meijer, H.E.H.

Published: 01/01/1997

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
- A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 11. Jan. 2019
Introduction

On a macroscale, polystyrene (PS) is brittle and polycarbonate (PC) is tough. On a microscale, however, craze craze fibrils (length scale nm) break after 300% strain in PS and 100% in PC. This contradictory behaviour is elucidated and the toughening by the addition of cavitating rubbery particles is explained.

Intrinsic material behaviour

Uniaxial compression experiments and model fits (true stress versus compressive strain, \(\lambda = \text{draw ratio} \)):

- strain softening: decreasing stress results in increasing strain → unstable deformation
- strain hardening: increase in stress needed for increase in strain → stable deformation
- PS: more strain softening, less strain hardening
- Polystyrene shows intrinsically a less stable deformation behaviour than polycarbonate
- crazes initiate after yield, triaxial stress level during craze initiation in PS \(\approx 40 \text{ MPa} \) and PC \(\approx 90 \text{ MPa} \)
- model offers accurate description of yield- and post-yield behaviour in arbitrary 3D stress states

Consequence for toughness

Deformation of a notched bar of PS and PC with a minor defect to model realistic (imperfect) specimen:

Polystyrene: at a global strain of 0.22%, the defect triggers local yielding, resulting in a critical dilative stresses (> 40 MPa) → PS crazes

Polycarbonate: at a global strain of 1.1%, the notch tip causes critical dilative stresses (> 90 MPa) → PC crazes

Improving toughness

Enhance toughness by minimizing defect sensitivity. Possible routes:
1. reduce yield stress: minimizes (unstable) strain softening and reduces triaxial stresses
2. improve (stabilizing) strain hardening
3. avoid high triaxial stress states by incorporation of voids or cavitating rubbery particles

Rubber toughening is successful because:
- cavitating rubber particles reduce triaxial stresses
- heterogeneous microstructure eliminates softening
- rubbery particles improve strain hardening

Conclusion

Brittleness of glassy polymers depends on unstable post-yield behaviour and triaxial crazing stress. Reducing softening, improving hardening and avoiding high triaxialities are the keys to enhanced toughness.

References