Texture and shape of two-dimensional domains of nematic liquid crystals
van Bijnen, R.M.W.; Otten, R.H.J.; van der Schoot, P.P.A.M.

Published in:
Physical Review E

DOI:
10.1103/PhysRevE.86.051703

Published: 01/01/2012

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 05. Dec. 2018
The function L is continuous on $0 < x < \infty$, and slowly oscillating. That is, $L(x) > 0$ for all $x > 0$, and for each fixed $y > 0$ we have $L(qy)L(x) = 1$ if $x \to \infty$. It is a well-known consequence that this holds uniformly with respect to q in every interval $0 < q < M$, provided that $0 < \delta < M < \infty$ (see [4], [5]).

The numbers a and b satisfy $a > 0$, $b > 0$.

Throughout the paper, λ, L, a, b, are fixed. That is, numbers depending only on λ, L, a, b, are called constants, and none of our statements is intended to hold uniformly with respect to λ, L, a, b.

B. For every fixed $u > 1$ we have

\[\lim_{y \to \infty} \sum_{y \leq x \leq uy} \lambda(p) = b \log a, \]

where p runs through the primes.

C. For $y \to \infty$ we have

\[\sum_{n \leq y} \lambda(n) n^s \sim a^{-1} b y^{(s-1)(s+1)} L(log y). \]

D. For every fixed $i > 2$ and every fixed $u > 1$ we have

\[\lim_{y \to \infty} \sum_{y \leq x \leq uy} \lambda(p)^i = 0. \]

E. If $0 < b < 1$ the following condition holds: for every $i (i = 1, 2, 3, \ldots)$ there is a constant C_i such that

\[\sum_{y < x \leq uy} \lambda(p)^i \leq C_i (log y)^{(2i-1)}. \]

Notations

For A, see (1.4), for $p(n)$ see (1.1), for $\mu(n)$ we use sec. 2. $\Phi(y, u)$ is an abbreviation:

\[\Phi(y, u) = y^{(s-1)(s+1)} L(log y). \]

A phrase like $C = C(\delta)$ means: C may depend on δ, on λ, L, a, b, but not on any other parameters or functions. If p is used as a summation index it is assumed to run through prime numbers only.

The main theorem

Let A, B, C, D, E hold. Let δ and M be constants, $0 < \delta < M$. Then we have, if $y \to \infty$,

\[A_i(y^u, y) \sim a^{-1} b y^{(s-1)(s+1)} L(log y), \]

uniformly for $0 < u < M$ (for η see sec. 2).
1.4 Remarks

In the case $a = 0$, $b > 0$ (part I) we had a similar, though simpler, result, viz.,
\begin{equation}
A(g^n, y) \sim \theta_n(y) \log y^n L(\log y).
\end{equation}

Note that $\eta(u) - b^{-1}\theta_n(u)$ (see sec. 2).

The constant u^{-b} in (1.6) and (1.10) is irrelevant, of course, since $u^{-b} L$ is also a slowly oscillating function. We only introduced this factor in order to keep (1.6) in harmony with (1.3), as (1.5) can be obtained from (1.6) by a process of summation by parts.

In assumption E we require (1.8) only if $0 < b < 1$. If $b > 1$ we do not need this extra condition. It is not difficult to see from our proofs that (1.5) is not needed either if $b = 1$, $L = 1$, but we did not stress this fact in the form of a theorem.

2. The function η

For $u = 0$ the function η is uniquely defined by the following set of conditions:

(i) $\eta(u)$ is continuous for $u > 0$,

(ii) $\eta(u) = b(u)^{-1}$ for $0 < u < 1$,

(iii) $\eta(u) = (b - 1)\eta(u) - b\eta(u - 1)$ for $u > 1$.

This differential-difference equation can be written in the following integral form. If $a > 1$, we have for $u > 1$
\begin{equation}
\eta(u) = \left(\frac{u}{a}\right)^{b-1} \eta(u) - b \int \eta(u^{0} - 1)^{b(u^{0} - 1)} du.
\end{equation}

The equivalence of (iiii) and (2.1) is easily verified if we write (2.1) in the form
\begin{equation}
\int \left((v - b \eta(v))' - b v - \eta(v - 1) \right) dv = 0.
\end{equation}

It is in the form (2.1) that the equation for η will arise in a natural way in our proof.

It is not difficult to derive from (i), (ii), (iii) that $\eta(u) - b^{-1}\eta(u)$ if $u > 0$, where $\theta_0(u)$ is the function occurring in (1.2) (it is characterized by $\theta_0(u) - u^0$ for $u > 0$).

3. The functional equation for $A_a(x, y)$

If $v > 1$, $y > 1$, then we have by (1.4),
\begin{equation}
A_a(y^n, y^p) - A_a(y^n, y) = \sum_{u < v} \lambda(n) u^m,
\end{equation}
where the dash indicates that only those u are admitted whose largest prime factor p satisfies $y < p < g^n$. For such a prime factor we have $p^m > g^n$, whence p^m does not divide u if $i > u$. Therefore the right-hand side of (3.1) equals
\begin{equation}
\sum_{u < v} \sum_{i < u} \lambda(n) p^m \sum_{u < v} \lambda(n) m^o,
\end{equation}
whence
\begin{equation}
A_a(y^n, y^p) - A_a(y^n, y) = \sum_{i < u} \sum_{u < v} \lambda(n) p^m A_a(y^n, p - 1)
\end{equation}
for all u, v with $u > 0$, $y > 1$, $v > 1$.

In our proof of the main theorem it will turn out that the terms with $i > 1$ are negligible.

4. Some lemmas

Our first lemma deals with uniform Riemann integrability. We consider a function $f_a(x)$ defined for $\xi < x < \eta$, depending on the parameter u $(a < u < \beta)$. If we have a dissection of the interval $[\xi, \eta]$, given by
\begin{equation}
\xi = x_0 < x_1 < \ldots < x_k = \eta,
\end{equation}
then we define the lower step-function s_{ul} by $s_{ul}(x) = \inf_{x_i < x < x_{i+1}} f_a(y)$ $(x_{i+1} < x < x_{i+1})$.

and the upper step-function s_{uL} similarly, with sup instead of inf.

We shall say that f_a is uniformly Riemann integrable over $\xi < x < \eta$ if for every $e > 0$ there is a $\delta > 0$ such that for every dissection of $[\xi, \eta]$ with maximal interval length less than δ and for all u in (a, β) we have
\begin{equation}
\int \left(s_{ul}(x) - s_{uL}(x) \right) dx < e.
\end{equation}

The latter formula implies that the so-called upper and lower sums differ less than e from the integral of f_a, uniformly with respect to u.

Lemma 1. Assume $0 < \xi < \eta$, $0 < \beta < \beta$, $b > 0$. Let $f(u)$ be defined and $\gamma > 0$ for all primes, and assume B. Let $f_a(x)$ be Riemann integrable over $[\xi, \eta]$, uniformly with respect to u $(a < u < \beta)$. Put
\begin{equation}
\sum_{u < v} \lambda(p) f_a(x) \frac{\log p}{\log y} = S[f_a].
\end{equation}
Then we have
\begin{equation}
\lim S[f_a] = b \int_{\xi}^{\eta} \frac{f_a(x)}{x} dx,
\end{equation}
uniformly with respect to u $(a < u < \beta)$.
Proof. If the dissection (4.1) is fixed (not depending on u or y), we easily derive from B that for $y \to \infty$
\begin{equation}
\lim_{y \to \infty} S[n_\alpha] - b \int x^1 S[n_\alpha(x)] x^1 dx < \epsilon
\end{equation}
uniformly with respect to u, since s_n is uniformly bounded. Needless to say, we have a similar result for s_m.

Let $\epsilon > 0$ be given. By virtue of the uniform integrability we can take the dissection (4.1) such that
\begin{equation}
b \int (s_n(x) - s_m(x)) x^1 dx < \epsilon
\end{equation}
for all u simultaneously ($s < u < \beta$). (Note that the factor x^1 is at most ξ^{-1}.) Next take y_0 such that for all $y > y_0$ the difference between $S[n_\alpha]$ and the right-hand side of (4.3) is less than $\epsilon/4$, for all u simultaneously, and such that the analogous statement is true for the upper sum $S[n_\alpha]$. As $A(y) > 0$ for all p, we have
\begin{equation}
S[n_\alpha] < S[n_\alpha(u)] < S[n_\alpha]
\end{equation}
and it follows that
\begin{equation}
|S[n_\alpha(u)] - b \int x^1 S[n_\alpha(x)] x^1 dx| < \epsilon,
\end{equation}
uniformly for $s < u < \beta$. This proves the lemma.

Lemma 2. Assume A, B, E. Let the number β satisfy $0 < \beta < \beta$ if $0 < \beta < 1$, and $1 < \beta < \beta$ if $b > 1$. Put $\gamma - \beta$ in the first case, $\gamma - \beta - 1$ in the second case. (So always $\gamma > 0$.) Then there is a positive constant $C = C(\beta)$ such that for all $y > 1$ and for all $s (0 < s < 1)$ we have
\begin{equation}
\sum_{y < p < y} \lambda(p) \left(\frac{\log (y/p)}{\log y} \right)^{1-\epsilon} < Cy^\epsilon
\end{equation}
Proof. a) If $1 < \beta < b$, the terms are at most $\lambda(p) y^{\beta-1}$, so for $0 < \epsilon \leq 1$ (4.4) follows from the fact that
\begin{equation}
\sum_{y < p < y} \lambda(p)
\end{equation}
is bounded (by B it has a finite limit).

b) Assume $0 < \beta < 1$, $y > 1$, $0 < s < 1$, and let N be the smallest integer such that $2^N > y$. We enlarge the sum in (4.4) by replacing the interval $y < p < y$ by $2^{-k} y < p < 2^{k} y$. Next we split this one into the intervals $2^{-k} y < p < 2^{k-1} y (k = 2, ..., N)$. On each one of these intervals we have
\begin{equation}
\log (y/p)^{1-\epsilon} < (k \log 2)^{1-\epsilon},
\end{equation}
whence, by E,
\begin{equation}
\sum_{y < p < y} \lambda(p) \log (y/p)^{1-\epsilon} < \sum_{k=2}^{N} (k \log 2)^{1-\epsilon} C_1 (\log (2^{-k} y)).
\end{equation}
If y is large enough we have $2^{-k} y > y$. As $\beta > 0$ we have $\sum_{k=2}^{N} (k \log 2)^{1-\epsilon} = O(N^\epsilon)$. Finally $\b(N - 1) \log 2 < \log y$, by the definition of N. It follows that the right-hand side of (4.5) is less than a constant times $\log (y/p)^{1-\epsilon}$, and (4.4) follows.

Lemma 3. Let L be a continuously slowly oscillating function defined for $x > 1$. Then for any $\delta > 0$ there exists a positive number $C = C(\delta)$ such that for all x_1, x_2 with $\frac{1}{2} < x_1 < x_2$ we have
\begin{equation}
|L(x_1)/L(x_2)| < C(\delta) (x_1/x_2)^\delta.
\end{equation}
For a proof we refer to [5], [6].

Our main theorem will be proved in sec. 5 by induction. The first step of this induction is the following lemma.

Lemma 4. Assume A, B, C, E. Let M be any number > 1. Then as $y \to \infty$ we have, uniformly for $1 < u < M$,
\begin{equation}
\sum_{y < p < y} \lambda(p) \log (y/p) y^{\beta-1} \log (\log y)^{1-\epsilon} < Cy^\epsilon.
\end{equation}
Proof. We fix a number β satisfying the conditions mentioned in lemma 2, and we take $\delta = b - \beta$, so $\delta > 0$. With this δ we apply lemma 3. If $2 < y^{\beta-1} < y^{\beta-1}$, we can take $x_1 = y^{\beta-1}/2, x_2 = y$, whence
\begin{equation}
\log (y^{\beta-1}/2) \log (\log y)^{1-\epsilon} < C_0 \log (y^{\beta-1}/2) y^\beta.
\end{equation}
It follows by E that if $2 < y^{\beta-1} < y$, we have the following rough estimate: there is a constant C with
\begin{equation}
\sum_{y < p < y} \lambda(n) y^{\beta-1} < C (\log (y^{\beta-1}/2) y^\beta.
\end{equation}
If $1 < y^{\beta-1} < 2$ this estimate is not efficient; in that case we just use that the left-hand side of (4.9) equals unity.

The total contribution to the left-hand side of (4.7) produced by those p for which both $y < p < y^{\beta-1}$ and $1 < y^{\beta-1} < 2$ hold, is relatively small. This contribution is at most
\begin{equation}
\sum_{y < p < y} \lambda(p) y^{\beta-1},
\end{equation}
and by E this is less than $C_1 y^{\beta-1} \log (\log y)^{1-\epsilon}$ when $y > 2$. By lemma 3 we have $L(\log y)^{1-\epsilon} = O(\log y)^{1-\epsilon}$, since δ is positive. It follows that the contribution of the p with $y < p < y^{\beta-1}, 1 < y^{\beta-1} < 2$ is $O(\Phi(y, u))$, uniformly with respect to u.

Next choose an $\epsilon, 0 < \epsilon < M^\beta$, and consider the total contribution of
those p for which both $y < p < y^*$ and $y^{1 - \alpha n'_{p}} < p < \frac{1}{2} y^*$ hold. For these terms we use (4.9), producing at most
\[C \Phi(y, u) \sum_{\nu = y^{1 - \alpha n'_{p}} < p < \frac{1}{2} y^*} \phi(p) \left(\frac{\log (\nu/p)}{\log y} \right)^{\nu - 1} \]
and this is at most $C' \Phi(y, u)$ according to lemma 2, with a new constant $C - C'$. Finally we take the terms for which simultaneously
\[y < p < y^*, \quad p < y^{1 - \alpha n'_{p}}. \]
We remark that C now gives
\[\sum_{n'_{p} \leq y} \lambda(n) n^s \sim \left(\frac{\log y/p}{\log y} \right)^{y - 1} L(\log y), \]
if $y \to \infty$, uniformly with respect to p and ν (p restricted by (4.10), ν by $1 < \nu < M$). Note that $L(\log y) \sim L(\log (y^* / p))$, since (by (4.10) and $1 < \nu < M$)
\[\log y \sim \log (y^* / p) < M \log y. \]

It does not do any harm to replace in (4.7) the expression on the left-hand side of (4.11) by the one on the right-hand side of (4.11). We then obtain as the contribution of the terms restricted by (4.10):
\[\sum_{\nu = y^{1 - \alpha n'_{p}} < p < \frac{1}{2} y^*} \lambda(p) f_{\nu} \left(\frac{\log \nu}{\log y} \right), \]
where $f_{\nu}(x)$ is defined for $1 < x < M$, $1 < \nu < M$ by
\[f_{\nu}(x) = \begin{cases} \frac{(x - \nu)^{-1}}{(1 - \nu)^{-1}} & \text{if } 1 < x \leq (1 - \nu) \nu, \\ 0 & \text{if } x > (1 - \nu) \nu. \end{cases} \]
(Note that for $1 < \nu < (1 - \epsilon) < 1$ we have $f_{\nu}(x) = 0$ for all x, and, accordingly, the sum (4.12) is empty in that case.)

Now lemma 1 provides the asymptotic behaviour of (4.12). It results that the left-hand side of (4.12) is
\[\Phi(y, u) \left[a^{-1} b \int f_{\nu}(x) x^{-1} dx + B \right], \]
where $\lim \sup_{\nu < y} |B| < C e^{2}$, uniformly with respect to u ($1 < u < M$).

As finally
\[\lim_{\nu \to \infty} \int f_{\nu}(x) x^{-1} dx = \int (u - \nu)^{-1} x^{-1} dx, \]
uniformly with respect to u ($1 < u < M$), the lemma follows.

Lemma 5. Assume A, C, D, E. Let i be a fixed integer > 1 and let M be any number > 1. Then we have
\[\sum_{\nu < y^*} \lambda(p) p^s \sum_{\nu < \nu' < y^*} \lambda(n) n^s = o(\Phi(y, u)) \]
uniformly for $1 < u < M$.

Proof. We shall use the letter q as a summation index running through all numbers $y^* < p < \frac{1}{2} y^*$.

The inner sum in (4.14) is certainly zero if $y^{1 - \alpha n'_{p}} < 1$, so the left-hand side of (4.14) equals
\[\sum_{\nu < y^*} \lambda(q) q^s \sum_{\nu < \nu' < y^*} \lambda(n) n^s, \]
(so this is zero for $u < i$).

Next we remark that if $\xi, \eta, u, \beta, f_{\nu}$ satisfy the conditions of lemma 1, then
\[\lim_{\nu \to \infty} \sum_{\nu < y^*} \lambda(q) f_{\nu} \left(\frac{\log q}{\log y} \right) = 0, \]
uniformly for $1 < u < M$. The fact that q are not prime is of no concern in the proof of that lemma: the lemma can still be used to show that our assumption D, i.e.
\[\lim_{\nu \to \infty} \sum_{\nu < y^*} \lambda(q) = 0 \]
(for every fixed $u > 1$) leads to (4.16). (This means specializing b in lemma 1 to $b = 0$, but this is not the same b we have in our present lemma 5: the b occurring in assumption C is positive according to A.)

A further preparatory remark is that lemma 2 and its proof remain true if we replace p by q, provided that $\sum_{\nu < \nu' < y^*} \lambda(q)$ is bounded, and this is certainly the case because it has limit 0, by D.

We can now prove lemma 5 by repetition of the proof of lemma 4, replacing p's by q's. There are two minor differences:

(i) The summation in (4.15) runs from y^* onward instead of from y onward. This gives no trouble, we can first show that the sum with $y^* < q < y^*$ is $o(\Phi(y, u))$, and then remark that (4.15) is even less.

(ii) In (4.13) we have to replace $a^{-1} b \int f_{\nu}(x) x^{-1} dx$ by $\sum_{\nu < y^*} \lambda(q) q^s$.
Applying \(C \) to \(A_a(y, y) \) (see (5.1)) and then lemma 4, to the double sum, we obtain

\[
A_a(y, y)\Phi(y, y) = a^{-1} b \left\{ (u-x)^{-1} \frac{1}{x} \sum_{n \leq x} \frac{1}{n} \right\}
\]

uniformly for \(1 < u < 2 \). Since (2.1) (with \(a = 1 \)) gives

\[
w^{-1} b \left\{ (u-x)^{-1} \frac{1}{x} \sum_{n \leq x} \frac{1}{n} \right\} = \eta(u) \quad (1 < u < 2),
\]

we have now proved the theorem for \(M < 2 \).

We proceed by induction. Assuming that the theorem has been proved for a certain \(M = 2 \), we show that it is correct for \(M \) replaced by \(M' = M + \frac{1}{2} \), i.e., we show that (1.10) holds uniformly for \(1 < u < M + \frac{1}{2} \).

We apply (3.3) with \(v = 1 \):

\[
(5.2)\quad A_a(y, y) = \sum_{i = 1}^{\infty} \sum_{x < n \leq x+i} \eta(x) \frac{1}{n},
\]

We have

\[
A_d(y^p, p^{-1}) = \sum_{y < x < z} \eta(x) n^p,
\]

and so, by lemma 3, the contribution of each fixed \(i > 1 \) to the right-hand side is \(o(\Phi(y, u)) \), uniformly for \(1 < u < M + \frac{1}{2} \). We have to consider at most \(M - \frac{1}{2} \) different values of \(i \), so their total contribution is \(o(\Phi(y, u)) \), and we can restrict ourselves to the remaining terms with \(i = 1 \).

For the values of \(v \) and \(\eta \) under consideration \(M < u < M + \frac{1}{2}, y < p < y^u \) we have

\[
\frac{1}{log(y^p/p)} < \frac{y}{log(p-1)} < (M-\frac{1}{2}) \frac{log p}{log (p-1)} < M
\]

for all \(y \) exceeding a certain constant \(C = C(M) \). Hence we may apply the induction hypothesis:

\[
A_a(y^p, p^{-1}) = (1 + o(1)) a^{-1} b \eta \left\{ \frac{log(y^p/p)}{log(p-1)} \right\} (y^p - p) \Phi(p, y) \left(\frac{log(p)}{p} \right)^{b-1} L(\log(p-1)) -
\]

\[
= (1 + o(1)) a^{-1} b \eta \left\{ \frac{y log y}{p log(p)} \right\} \Phi(p, y) \left(\frac{log y}{p} \right)^{b-1},
\]

uniformly for \(M < u < M + \frac{1}{2} \). (Note that \(\eta \) is uniformly continuous and positive on \(\left(\frac{1}{2}, M \right) \); moreover \(log(p-1)/log y \) lies between \(\frac{1}{2} \) and \(1M + \frac{1}{2} \), whence \(L(\log(p-1)) \) may be replaced by \(L(\log y) \).)

As (1.10) has already been proved for \(u = 2 \) we have

\[
A_a(y^p, y^q) \sim a^{-1} b \eta(2) (\frac{1}{2})^{b-1} \Phi(y, u),
\]

uniformly for \(M < u < M + \frac{1}{2} \). So it follows from (5.2) that

\[
A_a(y^p, y^q) \Phi(y, u) = a^{-1} b \eta(2) (\frac{1}{2})^{b-1} \left(\frac{y^{-1}}{u^{-1}} \right) \Phi(p, y) \left(\frac{log y}{p} \right)^{b-1} L(\log(p-1)),
\]

uniformly for \(M < u < M + \frac{1}{2} \).

We now apply lemma 1 with \(\xi = -1, \eta = \frac{1}{M + \frac{1}{2}}, \alpha = M, \beta = M + \frac{1}{2}, \) and

\[
I_d(x) = \left\{ \begin{array}{ll}
\eta(u-1) x^{-1} & \text{if } 1 < x < \frac{1}{M},
0 & \text{if } \frac{1}{M} < x < \frac{1}{M + \frac{1}{2}}.
\end{array} \right.
\]

This leads to

\[
A_a(y^p, y^q) \Phi(y, u) = \left(a^{-1} b \eta(2) (\frac{1}{2})^{b-1} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \Phi(y, u) \left(\frac{log y}{p} \right)^{b-1} L(\log(p-1)),
\]

uniformly for \(M < u < M + \frac{1}{2} \). By (2.1) (with \(a = 2 \)) the right-hand side is \(\alpha^{-1} b \eta(u) + o(1) \), and this completes the induction step.

6. Applications

6.1 If \(A\eta(n) \sim n^{-1} \) for all \(n \), and if \(a = 1, b = 1 \), the conditions of our theorem are satisfied, with \(L = 1 \). The result is that if \(\Psi(x, y) \) is the number of integers \(\leq x \) free of prime factors \(\leq y \), then \(\Psi(y, y) \sim \eta(y) y^u \) \(u \) fixed, \(y \rightarrow \infty \). This result was first obtained by A. A. BeICHTS [8], and extended to cases where \(u \rightarrow \infty \) in [1].

6.2 In Part I ([7]) we proved

\[
(6.1)\quad \sum_{y < n < 2^y} \mu(y) (\Psi(y))^2 \sim 0(y) log y.
\]

Inserting an extra factor \(d \), we now obtain from our present theorem (see (1.10))

\[
\sum_{y < n < 2^y} \mu(y) d \Psi(y)^2 \sim \eta(y) y^u
\]

if \(u > 0 \) is fixed, \(y \rightarrow \infty \). In this case we have \(\Psi(n) = \mu^2(n) \psi(n) \), \(a = 1, \) \(b = 1, \) \(L = 1 \). We omit a detailed verification of the conditions A, B, C, D, E; A and D are trivial, B and E depend on the facts that the expression

\[
\sum_{y < n < 2^y} \mu(y) \psi(n) \sim \eta(y) y^u
\]

has a limit if \(x \rightarrow \infty \); for C we need

\[
\sum_{y < n < 2^y} \mu(n) \psi(n) \sim y.
\]

The latter relation can be seen, for example, from the identity

\[
\sum_{y < n < 2^y} \mu(n) \psi(n) \sim \eta(y) \prod \left(\frac{1}{1 - \frac{1}{p}} - \frac{1}{p} \frac{1}{p} \frac{1}{p^2} \right).
\]
where the infinite product can be expanded into a Dirichlet series which converges absolutely for $s > \frac{1}{2}$ and has the value 1 at $s = 1$.

6.3 If we define the multiplicative function λ by $\lambda(n) = (n d(n))^{-1}$, where $d(n)$ stands for the number of divisors of n, then we have by (10)

$$\sum_{n \leq x} \lambda(n) n - \sum_{n \leq x} (d(n))^{-1} \sim e \pi(x) x^{-1},$$

with a certain positive constant c. The function λ evidently satisfies conditions A, B, C, D, E with $a = 1$, $b = \frac{1}{2}$, $L = c$. Therefore by (1.10) we have

$$\sum_{n \leq x} \mu^2(n) (d(n))^{-1} \sim e \eta(n) y^0 \log y x^{-1},$$

where η is the function defined in sec. 2 with $b = \frac{1}{2}$.

6.4 Another example with $b = \frac{1}{2}$ is found by defining

(i) $\lambda(p^i) = 0$ if $i = 1, 3, 5, \ldots, p = 3 \pmod{4},$

(ii) $\lambda(p^i) = p^{i-1}$ otherwise,

(iii) λ multiplicative.

It is well-known that for $n > 1$ we have $\lambda(n) = 1$ if n is the sum of two squares, $\lambda(n) = 0$ otherwise. Thus we have in this case

$$A(y, y) = \sum_{n \leq x} \lambda(n) n - \sum_{n \leq x} 1,$$

the dash indicates that n is omitted if n is not the sum of two squares.

For the partial sums we have

$$\sum_{n \leq x} \lambda(n) n \sim e \pi(x) x^{-1},$$

where $e = (2 \prod_{p \text{ prime}} (1 - p^{-2}))^{-1}$ (cf. [9], § 176), and the verification of A, B, C, D, E (with $a = 1$, $b = \frac{1}{2}$, $L = c$) is easy. So by (1.10) we have

$$A(y^0, y) \sim \eta(n) y^0 \log y x^{-1},$$

with the same function η as in example 2.

6.5 In all previous examples the function L occurring in our theorem was constant. It is not difficult to construct an example where this is not the case. We define

(i) $\lambda(p) = 1 + (\log \log p)^{-1}$ if $p > 2$,

(ii) $\lambda(p) = 0$ if $p = 2$ or $i > 2$,

(iii) λ multiplicative.

By a theorem of Wirsing [11] we now have

$$\sum_{n \leq x} \lambda(n) n \sim e^{-x} (\log x)^{-1} \prod_{p \leq x} (1 + \lambda(p)) \sim 4n^{-2} x G(x),$$

where $G(x) = \prod_{p \text{ prime}} (1 + (p + 1)^{-1} (\log \log p)^{-1})$, and y is Euler’s constant.

In order to prove that G is a slowly oscillating function of $\log x$ we must show that

$$\lim_{x \to \infty} \prod_{n \leq x} (1 + (p + 1)^{-1} (\log \log p)^{-1}) = 1$$

for every $c > 1$, and to show this it is sufficient to show that

$$\lim_{x \to \infty} \frac{1}{x} \int_{\log x}^{\log x} \frac{dt}{t \log t \log t} = 0$$

for every $c > 1$. (Here the prime number theorem is applied in the familiar way.) This is verified by straightforward calculation. Also, it is easy to see that $L(x) \to \infty$ if $x \to \infty$.

Thus we have given an example of a multiplicative function λ, satisfying A, B, C, D, E with $a = 1$, $b = 0$ and L is a slowly oscillating function which is not a constant (not even asymptotically). We omit the simple verification of A, B, C, D, E.

REFERENCES

(References 1, 2, 3 are the same as in part I, the others are in alphabetical order)

