Mechanics & design of fiber-reinforced vascular prostheses
van Oijen, C.H.G.A.; van de Vosse, F.N.; Baaijens, F.P.T.

Published: 01/01/2002

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Introduction

Failure of small diameter (<5 mm) synthetic prostheses is often contributed to a mechanical mismatch with the host artery [1], [2]. Our objectives:

- development of a small diameter synthetic vascular prosthesis which is mechanically compatible with the host artery
- design based on an experimentally validated computational model

Method

Mechanical characterisation

In an experimental setup the artery is subjected to internal pressure being suspended under axial extension. Real-time diameter measurement is performed using Ultrasound. These experiments provide material properties in longitudinal and axial directions. The applied loading is dynamic to investigate viscoelastic properties.

Computational framework

The model is based on a FE implementation of geometrically and physically nonlinear material. Incompressibility is incorporated using a mixed formulation and the balance equations are solved using an integrated method. The matrix-fiber structure is modeled using a new composite model incorporating fiber density:

\[\sigma = -pI + \mathbf{T} + \sum_{k=1}^{N} (\mathbf{\tau}_{jk} \cdot \mathbf{\epsilon}_k \cdot \mathbf{\epsilon}_k) \mathbf{\epsilon}_k \mathbf{\epsilon}_k \]

Initially a simplified non-FEM numerical model is used to fit the experimental data.

Prototype development

The prototype consists of a viscoelastic matrix (hydrogel) which is reinforced with non-linear elastic fibers (Lycra) to obtain material properties that match those of arteries. Design parameters are derived from the numerical model to give an optimized fiber layout. The fibers are fully embedded in the matrix to give extra strength to the graft and to provide better biocompatibility.

Results

Several results are presented in figure 1 and 2.

Discussion

- tests on natural arteries and hydrogel grafts
- fiber reinforced hydrogel tubes show better results than existing prostheses with respect to matching mechanical behavior of natural arteries
- there is still a mechanical mismatch between the artery and the prosthesis but it is likely that this mismatch can be eliminated

References: