Simulation of microfluidic mixing using artificial cilia

Baltussen, M.G.H.M.; Bos, F.M.; den Toonder, J.M.J.; Anderson, P.D.

Published: 01/01/2008

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 12. Dec. 2018
Simulation of Microfluidic Mixing using Artificial Cilia

M. G. H. M. Baltussen1, J. M. J. den Toonder1,2, F. M. Bos and P. D. Anderson3

1 Eindhoven University of Technology, 2 Philips Applied Technologies

Introduction

In Lab-on-Chip devices, mixing of fluids or reagents is often a big challenge. By mimicking natural cilia (Fig. 1), integrated on the floor of the micro-channel, den Toonder et al. [1] quite unexpectedly achieved good mixing. Cilia are the beating hairs on the outside of micro-organisms.

Fig. 1 (a) Paramecium a micro-organism covered with cilia. (b) Micrograph of artificial cilia, length L of a cilium is 100µm.

Objective

Determine the reason for the highly efficient mixing in the micro-mixer based on artificial cilia.

Numerical Model

A cross-section of the original micro-channel has been modelled, see Fig. 2. The fluid is assumed Newtonian and incompressible with density ρ and viscosity $\eta=1\text{ mPas}$, the solid Neo-Hookean, incompressible and inertialess with modulus $G=1\text{ GPa}$. The interaction between the cilia and the fluid is captured using the fictitious domain method [2].

Fig. 2 Computational domain $W=1\text{ mm}$, $H=0.5\text{ mm}$ and $D=L/\pi=32\text{ µm}$. Five cilia are placed on the channel floor.

The cilia unroll due to an applied body force and recover elastically. One full cycle is simulated using a finite element method, thereafter passive particles are tracked for 50 cycles using this velocity field. To study the effect of fluid inertia, the Reynolds number $Re=\frac{UL}{\eta}$ is varied from 0 to 10 by changing the density, where U is the typical velocity being $O(1\text{ m/s})$.

Experiments

The simulated particle positions are compared to experimental Optical Coherence Tomography data (OCT), which are recorded at the same cross-sectional plane. In OCT a laser illuminates suspended particles and the scattered light patterns are recorded.

Results

The simulated particle distributions after 50 cycles are given in Fig. 3. For $Re=0$ the motion is clockwise and for $Re=10$ the motion is counter clockwise. The latter is in accordance with experiments, indicating that inertia controls the flow direction even at these low Reynolds numbers.

Fig. 3 (a) Simulated particle positions after 50 cycles for $Re=0$ and (b) $Re=10$.

The OCT data at three sequential frames and the simulated particle positions at three times are shown in Fig. 4.

Fig. 4 (a) OCT data at three sequential times and (b) simulations for $Re=10$.

The simulated particle motion at $Re=10$ agrees well with the experimental data, hence inertia causes good mixing in this micro-mixer.

Conclusion

A model has been developed which predicts the flow and mixing of a micro-mixer based on artificial cilia. The simulations and experimental data show surprisingly good agreement for $Re=10$. Therefore fluid inertia is the reason for the efficient mixing in this device.

References

Acknowledgements

This work is part of the European project ‘Artic’ (Framework 6, STRP 033274).