An engineering approach to synchronization based on overrun for compositional real-time systems
Keskin, U.; van den Heuvel, M.M.H.P.; Bril, R.J.; Lukkien, J.J.; Behnam, M.; Nolte, T.

Published in:

DOI:
10.1109/SIES.2011.5953671

Published: 01/01/2011

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 16. Oct. 2018
An engineering approach to synchronization based on overrun for compositional real-time systems

Uğur Keskin, Martijn M.H.P. van den Heuvel, Reinder J. Bril and Johan J. Lukkien
Department of Mathematics and Computer Science
Technische Universiteit Eindhoven (TU/e)
Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

Moris Behnam and Thomas Nolte
Mälardalen Real-Time Research Centre (MRTC)
Mälardalen University
P.O. Box 883, SE-721 23 Västerås, Sweden

Abstract—Hierarchical scheduling frameworks (HSFs) provide means for composing complex real-time systems from well-defined independently developed and analyzed subsystems. To support shared logical resources requiring mutual exclusive access in two-level HSFs, overrun without payback has been proposed as a mechanism to prevent budget depletion during resource access arbitrated by the stack resource policy (SRP). In this paper, we revisit the global schedulability analysis of synchronization protocols based on SRP and overrun without payback for fixed-priority scheduled HSFs. We derive a new global schedulability analysis based on the observation that the overrun budget is merely meant to prevent budget depletion during global resource access. The deadline of a subsystem therefore only needs to hold for its normal budget rather than the sum of the normal and overrun budget. Our novel analysis is considerably simpler than an earlier, initially improved analysis, which improved both the original local and global schedulability analyses. We evaluate the new analysis based on an extensive simulation study and compare the results with the existing analysis. Our simplified analysis does not significantly affect schedulability compared to the initially improved analysis. It is therefore proposed as a preferable engineering approach to synchronization protocols for compositional real-time systems. We accordingly present the implementation of our improvement in an OSEK-compliant real-time operating system to sketch its applicability in today’s industrial automotive standards. Both implementation and run-time overheads are discussed providing measured results.

I. INTRODUCTION

Hierarchical scheduling frameworks (HSFs) have been introduced to support hierarchical processor sharing among applications under different scheduling services [1]. An HSF can be represented as a tree of nodes, where each node represents an application with its own scheduler for scheduling internal workloads (e.g. tasks) and resources are allocated from a parent node to its children nodes. The HSF provides means for decomposing a complex system into well-defined parts called subsystems. It essentially provides a mechanism for timing-predictable composition of coarse-grained subsystems. These subsystems can be independently developed, analyzed and tested. Temporal isolation between subsystems is provided through budgets which are allocated to subsystems.

Looking at existing industrial real-time systems, fixed-priority preemptive scheduling (FPPS) is the de facto standard of task scheduling, hence we focus on an HSF with support for FPPS within a subsystem. Having such support will simplify migration to and integration of existing legacy applications into the HSF. Our current research efforts are directed towards the conception and realization of a two-level HSF that is based on (i) FPPS for both global scheduling of budgets allocated to subsystems and local scheduling of tasks within a subsystem, (ii) the periodic resource model [1] for budgets, and (iii) the Stack Resource Policy (SRP) [2] for both local and global resource sharing.

Subsystems may share global logical resources requiring mutually exclusive access. An HSF without corresponding synchronization support is not realistic, since tasks in subsystems may for example use operating system services, memory mapped devices and shared communication devices. If a task that accesses a global shared resource is suspended during its execution due to the exhaustion of the corresponding budget, excessive blocking periods can occur which may hamper the correct timeliness of other subsystems [3]. We consider the overrun without payback mechanism [4], [5] to prevent depletion of a budget during global resource access by temporarily increasing the budget with a statically determined amount for the duration of that access. The term without payback means that the additional amount of budget does not have to be paid back during the next budget period. To distinguish this additional amount of budget from a normal budget, we will use the term overrun budget.

The global schedulability analysis in [4] is based on the assumption that the overrun budget is smaller than the normal budget. Moreover, it is stated that for well-constrained applications, the global resource access time will typically be much smaller than the normal budget. In this paper, we allow the overrun budget to become substantial compared to (or even larger than) the normal budget. This is motivated by the observation that arbitrary preemptions of tasks and subsystems...
may cause significant runtime overhead and high fluctuations in execution times, in particular due to architecture-related preemption costs [6], such as cache misses and pipeline flushes. Scheduling techniques aiming at a reduction of these preemption costs, such as fixed-priority scheduling with deferred preemption (FPDS) [7], may therefore significantly increase blocking times and overrun budgets. Our proposed analysis especially improves for relatively large overruns. Moreover, as large extents of embedded systems are resource constrained, a tight analysis is instrumental in a successful deployment of HSF techniques in real applications. Tighter local and global schedulability analysis has therefore been presented in [8] compared to the original analysis in [4], [5]. These improvements come at the cost of a significant increase in the analytical complexity. This paper reduces the complexity of the analysis in [8] without increasing its pessimism.

A. Contributions

We present a novel global schedulability analysis of synchronization protocols based on SRP and overrun without payback. Our analysis is based on the observation that the overrun budget is merely meant to prevent budget depletion during global resource access, and the deadline of a subsystem therefore only needs to hold for its normal budget rather than the sum of the normal and overrun budget. Our novel global analysis is considerably simpler than the initially improved analysis presented in [8]. Moreover, the results of our global analysis are at least as good as the global analysis presented in [8]. We illustrate this by means of an example. The improvement of the local analysis presented in [8] no longer applies to our novel analysis, however. We therefore evaluate the improvements of our novel analysis compared to the initially improved analysis by exploring the system load [5] in a simulation study. Finally, we evaluate an implementation of the overrun mechanism in an OSEK-compliant operating system that adheres to the new schedulability analysis. This marginally affects the implementation complexity and runtime overheads compared to our implementation in [9] which complies to both the original and initially improved analysis.

B. Overview

The remainder of this paper is as follows. Section II describes related work. Section III presents our real-time scheduling model. Section IV recapitulates the existing global and local schedulability analysis, i.e. both the original [4] and initially improved analysis [8]. Section V presents our new global schedulability analysis. Section VI compares our new analysis with the existing analysis by means of a simulation study. Section VII presents the implementation of the new overrun mechanism in an OSEK-compliant real-time operating system and its corresponding evaluation. Finally, Section VIII concludes this paper.

II. RELATED WORK

The increasing complexity of embedded real-time systems led to a growing attention for hierarchical scheduling of real-time systems [1], [10], [11], [12], [13]. Deng and Liu [10] proposed a two-level HSF for open systems, where subsystems may be independently developed and validated. The corresponding schedulability analysis for two-level HSFs have been presented in [12] for FPPS and in [13] for earliest-deadline-first (EDF) global schedulers. Shin and Lee [1] proposed the periodic resource model to specify guaranteed periodic processor allocations to subsystems. Easwaran et al. [14] proposed the explicit-deadline periodic (EDP) resource model, which extends the periodic resource model by explicitly distinguishing a relative deadline for the allocation time of budgets.

For synchronization protocols in FPPS-based HSFs, two mechanisms have been presented to prevent budget depletion during global resource access, i.e. overrun (with payback and without payback) [4] and self-blocking [15]. Recently, both mechanisms have been analytically compared with respect to their impact on the total system load for various subsystem parameters [16]. The performance of each mechanism heavily depends on these chosen parameters.

Overrun with payback was first introduced in the context of aperiodic servers in [3]. This mechanism was later re-used for a synchronization protocol in the context of two-level HSFs in [4] and complemented with a variant without payback. Although the analysis presented in [4] does not integrate in HSFs due to the lacking support for independent analysis of subsystems, this limitation is lifted in [5], [17].

In [8] it is shown that the existing local and global schedulability analysis in [5] is pessimistic. The global analytical improvement presented in [8] is based on the observation that during an overrun, higher priority subsystems may experience limited preemptiveness. In addition, [8] improved on the local schedulability analysis by using the EDP resource model instead of the periodic resource model.

III. REAL-TIME SCHEDULING MODEL

We consider a two-level hierarchical FPPS model using the periodic resource model to specify guaranteed processor allocations to tasks of subsystems. Because the focus of this paper is on synchronization protocols for global logical resources, we do not consider local logical resources. We use a synchronization protocol for mutual exclusive resource access based on SRP and overrun without payback.

A. System model

A system Sys contains a set R of M global logical resources\(^2\) R\(_1\), R\(_2\), ..., R\(_M\), a set S of N subsystems S\(_1\), S\(_2\), ..., S\(_N\), a set B of N budgets for which we assume a periodic resource model [1], and a single processor. Each subsystem S\(_i\) has a dedicated budget associated to it. In the remainder of this paper, we leave budgets implicit, i.e. the timing characteristics of budgets are taken care of in the description of subsystems. Each subsystem S\(_i\) therefore generates an infinite sequence of jobs \(t_{i,k}\). Subsystems are scheduled by means of FPPS and have fixed, unique priorities. For notational convenience, we assume

\(^2\)Non-preemptive executions of (i) regions of code to prevent architecture related preemption costs and (ii) operating-system services are also treated as access to so-called pseudo resources [18].
that subsystems are given in order of decreasing priorities, i.e.
S_1 has highest priority and S_N has lowest priority.

B. Subsystem model

Each subsystem S_n contains a set \mathcal{T}_n of n_t periodic tasks τ_1,
\ldots, τ_{n_t}, with fixed, unique priorities, which are scheduled by
means of FPPS. For notational convenience, we assume that
tasks are given in order of decreasing priorities, i.e. τ_1
has highest priority and τ_{n_t} has lowest priority. The set \mathcal{R}_n denotes
the subset of M_n global resources accessed by subsystem S_n.
The maximum time that a subsystem S_n executes while accessing
resource $R_i \in \mathcal{R}_n$ is denoted by X_{sl}, where $X_{sl} \in \mathbb{R}^+ \cup \{0\}$
and $X_{sl} > 0 \iff R_i \in \mathcal{R}_n$. The timing characteristics of S_n
are specified by means of a triple $< P_i, Q_i, X_i >$, where $P_i \in \mathbb{R}^+$
denotes its (budget) period, $Q_i \in \mathbb{R}^+$ its (normal) budget, and
X_i the set of maximum execution access times of S_n to global
resources. The maximum value in X_i is denoted by X_i.

C. Task model

The timing characteristics of a task $\tau_{sl} \in \mathcal{T}_n$ are specified
by means of a quartet $< T_{sl}, C_{sl}, D_{sl}, C_0 >$, where $T_{sl} \in \mathbb{R}^+$
denotes its minimum inter-arrival time, $C_{sl} \in \mathbb{R}^+$ its worst-case
computation time, $D_{sl} \in \mathbb{R}^+$ its (relative) deadline, C_0 a set of
maximum execution times of τ_{sl} to global resources, where
$C_{sl} \leq D_{sl} \leq T_{sl}$. The set \mathcal{R}_{sl} denotes the subset of \mathcal{R}_n accessed
by task τ_{sl}. The maximum time that a task τ_{sl} executes while accessing
resource $R_j \in \mathcal{R}_n$ is denoted by c_{slj}, where $c_{slj} \in \mathbb{R}^+ \cup \{0\}$, $C_{sl} \geq c_{slj}$, and $c_{slj} > 0 \iff R_j \in \mathcal{R}_{sl}$.

D. Resource model

The processor supply refers to the amount of processor allo-
cation that a virtual processor can provide. The supply bound
function $\text{supply}(t)$ of the EDP resource model $\Omega_n(P_i, Q_i, D_i)$
that computes the minimum possible processor supply for
every interval length t to a subsystem S_n is given by [14]:

$$\text{supply}(t) = \begin{cases} t - (k + 1)(P_i - Q_i) & \text{if } t \in V^{(k)} \\ (k - 1)Q_i & \text{otherwise} \end{cases}$$

where $k = \max \left(\left\lfloor \frac{t - (D_i - Q_i)}{P_i} \right\rfloor, 1 \right)$ and $V^{(k)}$ denotes
an interval $[kP_i + D_i - 2Q_i, kP_i + D_i - Q_i]$. The supply bound
function $\text{supply}(t)$ of the periodic resource model $\Gamma_n(P_i, Q_i)$ is
a special case of (1), i.e. with $D_i = P_i$.

E. Synchronization protocol

Overrun without payback prevents depletion of a budget
of a subsystem S_n during access to a global resource R_i
by temporarily increasing the budget of S_n with X_{sl}, i.e. the
maximum time that S_n executes while accessing R_i. To be able
to use SRP in an HSF for synchronizing global resources, its
associated ceiling terms need to be extended.

1) **Resource ceiling:** With every global resource R_i, two
types of resource ceilings are associated: an external resource
 ceiling RC_i for global scheduling of budgets and an internal
resource ceiling rc_{sl} for local scheduling of tasks. According
to SRP, these ceilings are defined as

$$RC_i = \min(N, \min(i \mid R_i \in \mathcal{R}_n)),$$

$$rc_{sl} = \min(n_i, \min(i \mid c_{sil} > 0)).$$

We use the outermost min in (2) and (3) to define RC_i and
rc_{sl} also in those situations where no subsystem uses R_i
and no task of \mathcal{T}_n uses R_i, respectively.

2) **System/subsystem ceiling:** The system/subsystem ceilings
are dynamic parameters that change during the execution.
The system/subsystem ceiling is equal to the highest (numerically
smallest) external/internal resource ceiling of a currently
locked resource in the system/subsystem.

Under SRP, a task τ_{sl} can only preempt the currently
executing task τ_{sl} if the priority of τ_{sl} is higher (i.e. the index i is lower) than the subsystem ceiling of S_n. A similar condition
for preemption holds for subsystems.

3) **Concluding remarks:** The maximum time X_{sl} that S_n
executes while accessing R_i can be reduced by assigning a value to rc_{sl} that is smaller than the value according to SRP.
For HSRP [4], the internal resource ceiling is therefore set to
the highest priority, i.e. $rc_{sl}^{\text{HSRP}} = 1$. Decreasing rc_{sl} may
cause a subsystem to become unfeasible for a given budget
[19], however, because the tasks with a priority higher than
the old ceiling and at most equal to the new ceiling may no
longer be feasible. The results in this paper apply for any
internal resource ceiling rc_{sl} where $rc_{sl} \geq rc_{sl}^{\text{HSRP}} = 1$.

IV. EXISTING SCHEDULABILITY ANALYSIS

This section briefly recapitulates the original analysis [4]
and the initially improved schedulability analysis [8].

A. Original schedulability analysis

Although the global schedulability analysis presented in [5],
[16] looks different, it is based on the analysis described in
[4] and therefore yields the same result.

1) **Global analysis:** The worst-case response time WR_s of
subsystem S_n is given by the smallest $x \in \mathbb{R}^+$ satisfying

$$x = B_s + (Q_s + X_s) + \sum_{j \leq s} \left(\left\lfloor \frac{x}{P_j} \right\rfloor Q_j + X_j \right),$$

where B_s is the maximum blocking time of S_s by lower priority
subsystems, i.e.

$$B_s = \max(0, \max(X_{sl} \mid t > s \land X_{sl} > 0 \land RC_i \leq s)).$$

We use the outermost max in (5) to define B_s also in those
situations where the set of values of the innermost max is
empty. To calculate the worst-case response time WR_s, we
use an iterative procedure based on recurrence relationships,
starting with a lower bound, e.g. $B_s + \sum_{j \leq s} (Q_j + X_j)$. The condition for global schedulability is given by

$$\forall 1 \leq i \leq N \quad WR_i \leq P_i.$$
for the total budget $Q_s + X_s$ of S_s. Similarly, the interference of higher priority subsystems S_i is based on the sum $Q_s + X_s$. A superscript P will be used to refer to this basic analysis for subsystems, e.g. WR_P.

In the sequel, we are not only interested in the worst-case response time WR_s of a subsystem S_s for particular values of B_s, Q_s, and X_s, but in the value as a function of the sum of these three values. We will therefore use a functional notation when needed, e.g. $WR_s(B_s + Q_s + X_s)$.

2) Local analysis: The existing condition for the local schedulability of tasks within a subsystem S_s [5] is given by

$$\forall 1 \leq i \leq n_s, 0 < t < D_{si} \exists b_{si} + C_{si} + \sum_{j \in i} \left(\frac{t}{I_{sj}} \right) \cdot C_{sj} \leq \text{sbf}_s(t), \quad (7)$$

where b_{si} is the maximum blocking time of τ_{si} by lower priority tasks, i.e.

$$b_{si} = \max(0, \max\{c_{si j} \mid j > i \land c_{si j} > 0 \land r_{si j} \leq i\}), \quad (8)$$

and $\text{sbf}_s(t)$ is the supply bound function of the periodic resource model $\Gamma_s(P_s, Q_s)$ for the subsystem S_s under consideration. We use the outermost max in (8) to define b_{si} also in those situations where the set of values of the innermost max is empty.

The value for X_{sl} of subsystem S_s is given by

$$X_{sl} = \max_{1 \leq i \leq n_s} X_{sil}, \quad (9)$$

where X_{sil} denotes the maximum time that S_s executes while task τ_{il} accesses resource $R_{lj} \in R_s$, with $X_{sil} \in \mathbb{R}^+ \cup \{0\}$ and $X_{sil} > 0 \Leftrightarrow c_{sil} > 0$. For $c_{sil} > 0$, X_{sil} is given by [5]

$$X_{sil} = c_{sil} + \sum_{j < r_{sil}} C_{sj}, \quad (10)$$

B. Initially improved analysis

The schedulability analysis presented in [8] improves on both the initial global and local analysis in [4], [5].

1) Global analysis: Similar to the original analysis, the period P_s of a subsystem S_s serves as a deadline for the total budget $Q_s + X_s$. The improvements presented in [8] are based on two observations: (i) while S_s is accessing R_{lj} using X_s, it can only be preempted by subsystems with a higher priority than \mathcal{R}_s, and (ii) blocking starts before the consumption of the overrun budget X_s starts. Due to (i), the improved global analysis is similar to the analysis for FPDS [7] and FPPS with preemption thresholds [21] in the sense that all jobs in a so-called level-s active period have to be considered to determine the worst-case response time WR_s of subsystem S_s. Unlike the analysis described in [7], [21], subsystems S_{s-l} till S_{s-1} cannot preempt S_s at the finalization time of Q_s when S_s is accessing R_{lj}, which is an immediate consequence of (ii). Finally, when a subsystem S_s uses multiple global resources, i.e. $M_s > 1$, the schedulability of S_s potentially needs to be determined for each of those resources; see [8] for more details. These improvements increase the complexity of the analysis significantly compared to [4], [5].

2) Local analysis: The improved local analysis is based on the observation that when a system is feasible from a global scheduling perspective, i.e. the deadline P_s of subsystem S_s is met for the total budget $Q_s + X_s$, the latest finalization time of Q_s is guaranteed to be at least X_s before the next activation of S_s. Hence, the supply bound function $\text{sbf}_s(t)$ of the EDP resource model $\Omega_s(P_s, Q_s)$ for overrun without payback can be used rather than $\text{sbf}_s(t)$ of the periodic resource model $\Gamma_s(P_s, Q_s)$ in (7), where $\Delta_s = P_s - X_s$. Because $X_s \geq 0$ for all subsystems (by definition), $\text{sbf}_s(t) \leq \text{sbf}_s(t)$ for all subsystems. As a result, a subsystem may be schedulable according to the local analysis based on $\text{sbf}_s(t)$, but not be schedulable based on $\text{sbf}_s(t)$.

V. THE NEW GLOBAL SCHEDULABILITY ANALYSIS

The overrun budget X_s is only meant to prevent budget depletion of subsystem S_s during global resource access. As a result, the period P_s of S_s only needs to serve as a deadline for the normal budget Q_s of S_s and not for its total budget $Q_s + X_s$. This allows for a further improvement of the global analysis compared to the initially improved analysis [8]. It also requires us to revert to the original schedulability analysis for the local analysis, because P_s does not need to be met by X_s, and $P_s - X_s$ therefore does not need to be met by Q_s.

In the remainder of this section, we first recapitulate the notion of a level-s active period as defined in [7]. Next, we present analysis for the worst-case response time WR_s^P of the normal budget Q_s of subsystem S_s. We subsequently present an example illustrating the improvement of our novel global analysis compared to the original and the initially improved analysis. This section is concluded with a discussion on the strong and weak points of our novel analysis compared to the initially improved analysis.

A. Level-s active period

An active interval of a job of a subsystem is defined as the time span between the activation time of that job and its finalization time. A level-s active period is a smallest interval that only contains entire active intervals of jobs of subsystem S_s and jobs of subsystems with a higher priority than S_s. The worst-case length WL_s of a level-s active period is found when the level-s active period starts at a so-called ε-critical instant, i.e. when S_s has a simultaneous release with all higher priority subsystems and a lower priority subsystem with a maximum blocking time B_s of S_s starts its access to the associated global shared resource an infinitesimal time ε before that simultaneous release. The worst-case length WL_s is given by the smallest $x \in \mathbb{R}^+$ that satisfies

$$x = B_s + \sum_{l \leq s} \left(\frac{x}{P_s} \right) (Q_s + X_s). \quad (11)$$

To calculate WL_s, we can use an iterative procedure based on recurrence relationships, starting with a lower bound, e.g. $B_s + \sum_{l \leq s} (Q_s + X_s)$. The maximum number wl_s of jobs of S_s in a level-s active period is given by

$$wl_s = \left\lfloor \frac{WL_s}{P_s} \right\rfloor. \quad (12)$$
B. Worst-case response time

The worst-case response time WR^Q_s of the normal budget Q_s of subsystem S_s is given by the largest response time of Q_s of the jobs of S_s in a level-s active period that starts at an ε-critical instant, i.e.

$$WR^Q_s = \max_{0 \leq k < w_s} WR^Q_{sk},$$

(13)

where WR^Q_{sk} denotes the worst-case response time of Q_s of job t_{sk} for subsystem S_s. To determine WR^Q_{sk} we have to consider up to three suprema. First, the sequence of jobs t_{s0} till t_{sk} experience a blocking $B_s \geq 0$ by lower priority subsystems in the worst-case situation. Similar to FPDS [7], the worst-case blocking is a supremum for $B_s > 0$ rather than a maximum. Second, the jobs t_{s0} till $t_{s,k-1}$ need their overrun budget X_s to access global resources. Because the access to a global resource starts during the execution of the normal budget, the actual amount of overrun budget that is used is a supremum rather than a maximum. Finally, in the worst-case scenario the access to the global resource also starts as late as possible during the execution of job t_{sk}. This maximizes the interference of higher priority subsystems, and also gives rise to a supremum rather than a maximum. The worst-case response time WR^Q_{sk} can therefore be described as

$$WR^Q_{sk} = \lim_{Q \to Q_s} \lim_{X \to X_s} \lim_{B \to B_s} WR^P_s(B + k(Q_s + X) + Q) - kP_s,$$

(14)

where WR^P_s is the worst-case response time of a fictive subsystem S'_s with a period $P'_s = (k + 1)P_s$, a normal budget $Q'_s = k(Q_s + X) + Q$ and a maximum blocking time B, and kP_s represents the activation of job t_{sk} relative to the start of the level-s active period. Using the following equation from [7]

$$\lim_{x \to C} WR^P_s(x) = WR^P_s(C)$$

(15)

we derive

$$WR^Q_{sk} = WR^P_s(B_s + (k + 1)Q_s + kX_s) - kP_s.$$

(16)

C. An example

For illustration purposes, we will use an example system Sys_1 containing three subsystems S_1, S_2 and S_3 sharing a global resource R_1. The characteristics $<P_s, Q_s, X_s>$ of the subsystems are given in Table I.

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>P_s</th>
<th>$Q_s + X_s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>S_2</td>
<td>8</td>
<td>$Q_s + X_s$</td>
</tr>
<tr>
<td>S_3</td>
<td>10</td>
<td>1 + X_s</td>
</tr>
</tbody>
</table>

Figure 1 illustrates the global schedulability of (a) the original [4], (b) the initially improved [8] and (c) our new analysis by means of feasibility volumes for the example system Sys_1. It is clear that the initial improvements in [8] (Figure 1(b)) significantly extends the feasibility volume compared to the original analysis (Figure 1(a)). Our novel analysis only slightly extends the volume, however, as shown in Figure 1(c). We take a closer look at the latter improvement by means of a specific example.

Example: Sys_1 with $Q_2 = 2.0, X_2 = 1.0$ and $X_3 = 1.8$. We determine WR^Q_{sk} using the analysis described above; see also Figure 2. Because S_3 is the lowest priority subsystem, $B_3 = 0$. We first determine w_{l3} using (11) and (12), and find $WL_3 = 96$ and $w_{l3} = \lceil WL_3/P_3 \rceil = \lceil 96/10 \rceil = 10$. For space considerations, we will only determine $WR^Q_{3,3}$, which is the maximum value for those 10 jobs. We get $WR^Q_{3,3} = WR^P_s(4 + 5.4) - 3 \cdot 10 = 38.4 - 30 = 8.4$ using (16). Finally, using (13) we find $WR^Q_{sk} = \max_{0 \leq k < 10} WR^Q_{3,k} = 8.4$.

The worst-case response time of the total budget $Q_3 + X_3$ of S_3 as determined by the initial improvements in [8] is equal to 10.2, which is larger than the deadline $P_3 = 10$ of S_3; see also Figure 2. The example is therefore not schedulable according to the global analysis in [8], but can be scheduled using our new analysis.

D. Concluding remarks

Our novel global analysis treats the period P_s as a deadline for Q_s, rather than $Q_s + X_s$ as is done in the initially improved
and the request bound function, $\text{RBF}_S(x)$, of a subsystem S, is defined by the right-hand side of (4). Note that x can be selected from a finite set of scheduling points [22] and that α_s is the smallest fraction of the processor resource that is required to schedule a subsystem S. This satisfies the schedulability condition presented in Section IV-A1, assuming a global resource-supply of $\alpha_s x$. One can think of system load as decreasing the speed of the processor by the factor load_sys.

This increases a subsystem’s normal budget, overrun budget, and blocking times by a factor $1/\text{load}_\text{sys}$.

b) Evaluating system load: Evaluating the system load for IISA and NSA is more complex than for OSA, because it has more than one response-time equation to determine the global schedulability of subsystems (see Section V). We therefore cannot apply the OSA approach to evaluate the system load for IISA and NSA.

We solve this problem by using a binary search algorithm, such that the system load is selected by the search algorithm and corresponding system schedulability is checked [8]. We therefore multiply the normal budgets, maximum overrun budgets, and blocking times of all subsystems in equations (11) - (16) by a factor $1/\text{load}_\text{sys}$. If the system is schedulable, then the algorithm selects a lower system load and try again. If the system is unschedulable, then the algorithm selects a higher system load. The algorithm terminates if the selected system load $\text{load}_\text{sys} > 1$ and the system is unschedulable, or when the difference between the previous and the current system load is less than a given acceptance limit. Because we use a binary search algorithm for both NSA and IISA, the complexity of evaluating the system load is significantly higher compared with OSA. However, note that we merely use the system load for comparison purposes. Hence, it has no relationship with the complexity of the schedulability analysis.

The efficiency of NSA is measured by the required system load of a subsystem in order to be schedulable relative to IISA and OSA. Given that NSA excludes overrun budgets from the response-time analysis and that the analysis is only based on a subsystem’s normal budget, NSA requires less system load to guarantee the schedulability of systems compared to OSA. This is not necessarily true for IISA, because IISA also improves the local schedulability analysis, i.e. the local analysis may decrease a subsystem’s normal budget.

VI. Evaluation

This section evaluates our novel schedulability analysis (NSA) for the overrun mechanism, based on a subsystem’s budget with respect to processor resources. We compare NSA with the initially improved schedulability analysis (IISA) presented in [8] and with the original schedulability analysis (OSA) of the overrun mechanism using the notion of system load [5]. The system load provides an indication of the system’s processor requirements. Our comparison is carried out by means of simulation experiments to show the performance of NSA relative to alternative approaches.

First, we briefly explain the notion of system load. Secondly, we show how it is adapted for NSA.

a) System load: The system load is defined as a quantitative measure to represent the minimum amount of processor allocations which guarantee the global schedulability of a system Sys. OSA calculates the system load, load_sys, by

$$\text{load}_\text{sys} = \max \{\alpha_s\},$$

where

$$\alpha_s = \min_{0 < c \leq P_i} \left\{ \frac{\text{RBF}_S(x)}{x} \mid \text{RBF}_S(x) \leq x \right\}$$

and the request bound function, $\text{RBF}_S(x)$, of a subsystem S, is defined by the right-hand side of (4). Note that x can be selected from a finite set of scheduling points [22] and that α_s is the smallest fraction of the processor resource that is required to schedule a subsystem S. This satisfies the schedulability condition presented in Section IV-A1, assuming a global resource-supply of $\alpha_s x$. One can think of system load as decreasing the speed of the processor by the factor load_sys.

This increases a subsystem’s normal budget, overrun budget, and blocking times by a factor $1/\text{load}_\text{sys}$.

b) Evaluating system load: Evaluating the system load for IISA and NSA is more complex than for OSA, because it has more than one response-time equation to determine the global schedulability of subsystems (see Section V). We therefore cannot apply the OSA approach to evaluate the system load for IISA and NSA.

We solve this problem by using a binary search algorithm, such that the system load is selected by the search algorithm and corresponding system schedulability is checked [8]. We therefore multiply the normal budgets, maximum overrun budgets, and blocking times of all subsystems in equations (11) - (16) by a factor $1/\text{load}_\text{sys}$. If the system is schedulable, then the algorithm selects a lower system load and try again. If the system is unschedulable, then the algorithm selects a higher system load. The algorithm terminates if the selected system load $\text{load}_\text{sys} > 1$ and the system is unschedulable, or when the difference between the previous and the current system load is less than a given acceptance limit. Because we use a binary search algorithm for both NSA and IISA, the complexity of evaluating the system load is significantly higher compared with OSA. However, note that we merely use the system load for comparison purposes. Hence, it has no relationship with the complexity of the schedulability analysis.

The efficiency of NSA is measured by the required system load of a subsystem in order to be schedulable relative to IISA and OSA. Given that NSA excludes overrun budgets from the response-time analysis and that the analysis is only based on a subsystem’s normal budget, NSA requires less system load to guarantee the schedulability of systems compared to OSA. This is not necessarily true for IISA, because IISA also improves the local schedulability analysis, i.e. the local analysis may decrease a subsystem’s normal budget.

A. Simulation setting

Our simulation applies the analysis of NSA, IISA and OSA on 1000 randomly generated systems. Initially, we assume that each system comprises 5 subsystems and each subsystem contains 4 tasks. We assume only one global shared resource and all subsystems share this resource. Two tasks in each subsystem access this global shared resource.

As shown in [8], the gain for IISA compared to OSA is maximized when critical sections are executed with local and global preemptions disabled. In line with this observation and for simplicity, we assume that the internal resource ceilings of global shared resources are equal to the highest task priority in each subsystem (i.e., $rc_{sl} = 1$), and $T_{sl} = D_{sl}$ for all tasks. For
B. Simulation results

parameters are generated following uniform distributions. so that it highlights some properties of the new analysis: to the studies in [8]. The range of the random values is select ed randomly divided to its tasks. Since the values of task perio ds systems. The assigned utilization to each subsystem is in tu rn subsystems in the system.

randomly generates subsystem and task periods within this range following a uniform distribution. These periods are specified as a all tasks in the system is fixed to a specified value, its value cannot be greater than the execution time of a task. The actual critical-section execution time is given as an input parameter, require to generate new systems, since this does not affect global shared resource. Changing this parameter does not maximum time that a task may execute while accessing a

We decrease the ratio between the critical-section execution times and a subsystem’s period, i.e. CS_i/P_i, by increasing subsystem and task periods. These periods are specified as a range with a lower and upper bound. The simulation program randomly generates subsystem and task periods within this range following a uniform distribution.

3) Number of subsystems (N): increase the number of subsystems in the system.

4) System utilization (U^{Sys}): The sum of the utilization of all tasks in the system is fixed to a specified value, U^{Sys}. The given system utilization is randomly divided among the subsystems. The assigned utilization to each subsystem is in turn randomly divided to its tasks. Since the values of task periods are generated within a specified interval, their execution times are derived from the task’s utilization. All randomized system parameters are generated following uniform distributions.

B. Simulation results

We have performed four different simulation studies similar to the studies in [8]. The range of the random values is selected so that it highlights some properties of the new analysis:

- **Study 1** specifies critical-section execution times $CS_i \in \{2,4\}$, task periods $T_{di} \in [140,1000]$, subsystem periods $P_i \in [40,70]$, $U^{Sys} = 20\%$ and $N = 5$.

- **Study 2** increases the range of the subsystem periods P_i and task periods T_{di} (compared to Study 1) to $P_i \in [100,200]$ and $T_{di} \in [400,1000]$ with $CS_i = 2$.

- **Study 3** changes the number of subsystems (compared to Study 1) to $N = 8$ with $CS_i = 2$.

- **Study 4** changes the system utilization (compared to Study 1) to $U^{Sys} = 30\%$ with $CS_i = 2$.

Figure 3(a) and Figure 3(b) show the results of Study 1 for the case of $CS_i = 2$ and $CS_i = 4$ using OSA, IISA and NSA. These figures show the distribution of all randomly generated subsystems that have a system load within the ranges shown in the x-axis. The lines that connect points are only used for illustration purposes. Figure 4 shows the results of Study 2. Figure 5 and Figure 6 show the results of Study 3 and Study 4.

C. Evaluation

Given our simulation results we can conclude that neither IISA nor NSA is superior. In the remainder of this section we therefore focus on the comparison of NSA to OSA.

1) Increasing critical-section execution times (CS_i): Comparing the results of NSA and OSA and given that the NSA results are almost the same as the results of IISA, the same conclusion made in [8] is also valid for this case. When critical-section execution times CS_i are increased, NSA achieves better results than OSA, see Figure 3(a) and Figure 3(b). In other words, if the ratio CS_i/P_i is relatively high (i.e., X_i/P_i), then NSA performs significantly better than OSA.

2) Increasing the subsystem period (P_i) and task periods (T_{di}) ranges: In Study 2, we decrease the ratio CS_i/P_i by increasing the range of the subsystem periods. In this case, the improvement that NSA can achieve is less than in Study 1, because X_i/load$_{sys}$ becomes less significant within the subsystem period P_i (compare Figure 3(a) with Figure 4).

3) Increase the number of subsystems (N): In Study 3, we investigate the effect of increasing the number of subsystems compared to Study 1. The results are shown in Figure 5. We can see that increasing N decreases the improvement of NSA over OSA, because increasing the number of subsystems will increase the interference of the higher priority subsystems. In turn, this decreases our improvement.

4) Increase the system utilization (U^{Sys}): Finally, in Study 4 we investigate the effect of increasing the system utilization on the performance of NSA compared to Study 1.
When comparing the results of Figure 6 with Figure 3(a), we can see that increasing the value of the system utilization, \(U_{Sys} \), decreases the improvement that NSA can achieve over OSA. The reason for this is that increasing the value of \(U_{Sys} \) increases the normal budget of all subsystems in the system. This also increases the interference of the higher priority subsystems, see (11) - (16), and will therefore limit the potential improvement of NSA compared to OSA.

5) Concluding remarks: Looking at the results of all figures, we can see that the system load required by both IISA and NSA is nearly the same. As explained previously, the improvement in the global analysis that NSA can achieve compared to IISA is limited by the improvement in the local analysis of IISA. For example, by increasing the critical-section execution times to \(CS_i = 4 \) in Study 1, one would expect that NSA provides better results than IISA, because an increasing \(CS_i \) also increases \(X_i \) and the deadline \(P_i \) only holds for \(Q_i \) for NSA rather than for \(Q_i + X_i \) for IISA. This increased \(X_i \) is (partially) excluded from our new analysis. At the same time, however, such an increase of \(X_i \) also increases the improvement in the local analysis of IISA.

Changing other system parameters, e.g. subsystem periods, the number of subsystems and the subsystem utilization, has the same effect on both IISA and NSA as shown by Study 2. Note that we considered the case where IISA has its maximum gain compared to OSA, i.e. local and global preemptions are disabled while executing in a critical section. If we consider a setup where resource ceilings are configured such that (global) preemptions are allowed during the execution of a critical section, then the improvement of IISA will be limited compared to OSA. However, this does not affect the improvement that NSA can provide.

VII. MODIFIED OVERRUN IMPLEMENTATION

This section outlines our overrun implementation in an OSEK-compliant real-time operating system, \(\mu C/OS-II \) [23]. The kernel is open source, extensively documented [24] and applied in many application domains, e.g. avionics, automotive, medical and consumer electronics. We first give an overview of prerequisite \(\mu C/OS-II \) extensions. Next we present our protocol implementation, which builds on top of a two-level HSF with corresponding support for SRP [9]. We cannot re-use our existing implementation of overrun [9], because our presented analysis possibly introduces a budget replenishment while a subsystem has remaining overrun budget.

A. Timed event management

Intrinsic to our reservation-based subsystem scheduler is timed-event management. This comprises timers to accommodate (i) periodic timers at the global level for budget replenishment of periodic servers and at the subsystem level to enforce minimal inter-arrivals of sporadic task activations and (ii) virtual timers to track a subsystem’s budget.

When these event timers expire, e.g. budget depletion and budget replenishment, their corresponding handlers are executed in the context of the timer interrupt service routine (ISR). We refer to [25] for a more extensive overview of such a timer-management module implemented and evaluated in \(\mu C/OS-II \).

B. Two-level HSF with SRP support

For ease of presentation, we limit our implementation to idling periodic servers [26] to allocate budgets to subsystems. Extending \(\mu C/OS-II \) with basic HSF support requires the identification and realization of the following concepts:

1) Subsystems: \(\mu C/OS-II \) tasks are bundled in groups of sixteen to accommodate efficient FPPS [24]. A subsystem is therefore naturally represented by such a group.
2) Periodic servers: A realization of the idling periodic server is very similar to the implementation of a periodic task using our timed-event management. An idling server contains an idle task at the lowest, local priority, which is always ready to execute and cannot be blocked.

3) Two-level SRP: We extended the μC/OS-II scheduler with SRP’s notion of subsystem and system ceilings. We re-use our two-level SRP-implementation in [9] to maintain each of these subsystem and system ceilings by means of a stack data structure. The primitive updateSubsystemCeiling maintains the local ceiling stack. We define an SRP interface to access global resources and to maintain its corresponding data structure, i.e.:

1) void SRPMutexLock(Resource* r);
2) void SRPMutexUnlock(Resource* r);

After SRPMutexUnlock has reduced the system ceiling, it calls the scheduler. The values on top of the local/global ceiling stacks represent the current subsystem and system ceilings.

C. Protocol implementation

In many microkernels, including μC/OS-II, the only way for tasks to share data structures with ISRs is by means of disabling interrupts. We therefore assume that our synchronization primitives execute non-preemptively with interrupts disabled. In addition to the implementation of the lock and unlock operations, we need to adapt the budget-depletion and replenishment event handlers to cope with overrun. This requires to keep track of the number of resources locked within subsystem \(S_i \) and whether or not a server executes in its overrun budget \(X_i \). The server data-structure is therefore extended with four fields for bookkeeping purposes, i.e. lockedResourceCounter, inOverrun, replenishBudget and \(X_i \).

1) Resource locking: The lock operation is a straightforward two-level SRP-based lock. It first updates the locked resource counter and the subsystem’s local ceiling to limit interference of tasks within the subsystem itself and subsequently updates the system ceiling with SRPMutexLock.

2) Resource unlocking: Unlocking a resource means that the subsystem/system ceiling must be updated and the SRP resource must be released. In case any overrun budget is consumed and no other global resource is locked within the same subsystem, we need to inform the scheduler that overrun has ended. However, if a replenishment has occurred during the overrun duration, i.e. \(S_i \),replenishBudget = true, we need to execute a deferred replenishment of the subsystem’s budget. The unlock operation in pseudo-code is:

```
Algorithm 1 void NSA_unlock(Resource* r);
1: updateSubsystemCeiling();
2: S_i.lockedResourceCounter --;
3: if S_i.lockedResourceCounter = 0 and S_i.inOverrun then
4: if S_i.replenishBudget = true then
5: S_i.replenishBudget ← false
6: setSubsystemBudget(Ω);
7: else
8: setSubsystemBudget(0);
9: end if
10: S_i.inOverrun ← false;
11: end if
12: SRPMutexUnlock(r);
```

The command setSubsystemBudget(0) performs two actions: (i) the server is blocked to prevent the scheduler from rescheduling the server, and (ii) the virtual timer, which tracks a subsystem’s budget depletion, is canceled.

3) Budget depletion: We extend the event handler for budget depletion with the following rule: if any task within the subsystem holds a resource, then the budget is replenished with an amount \(X_i \) and server inactivation is postponed. This requires to set a new virtual timer with the value \(X_i \).

4) Budget replenishment: For each periodic server an event handler is periodically executed to recharge its budget. If a replenishment timer \(T_i \) expires while subsystem \(S_i \) executes in its overrun budget, we cannot replenish budget \(Q_i \), because any remaining overrun budget must be discarded when a subsystem releases its resources. In order to avoid multiple, expensive timer manipulations, a replenishment must be deferred until overrun ends, i.e. all resources \(R_i \in \mathcal{R} \) are unlocked. We implement this by setting \(S_i \).replenishBudget ← true.

D. Synchronization overheads

We recently created a port for μC/OS-II to the OpenRISC platform [27] to experiment with the accompanying cycle-accurate simulator. The OpenRISC simulator allows software-performance evaluation via a cycle-count register. This profiling method may result in either longer or shorter measurements between two matching calls due to the pipelined OpenRISC architecture. Some instructions in the profiling method interleave better with the profiled code than others. The measurement accuracy is approximately 5 instructions.

1) Time complexity: Since it is important to know whether a real-time operating system behaves in a timewise predictable manner, we investigate the disabled interrupt regions caused by the execution of overrun primitives. Our synchronization primitives are independent of the number of servers and tasks in a system, but introduce overheads that interfere at the system level due to their required budget-timer manipulations. This makes our primitives more expensive than a straightforward two-level SRP implementation.

<table>
<thead>
<tr>
<th>Event</th>
<th>SRP</th>
<th>Overrun [9]</th>
<th>Improved overrun</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BC</td>
<td>WC</td>
<td>BC</td>
</tr>
<tr>
<td>Lock</td>
<td>124</td>
<td>124</td>
<td>196</td>
</tr>
<tr>
<td>Unlock</td>
<td>106</td>
<td>106</td>
<td>196</td>
</tr>
<tr>
<td>Deplete</td>
<td>-</td>
<td>-</td>
<td>383</td>
</tr>
<tr>
<td>Replenish</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Table II compares the execution times of SRP-based synchronization primitives. The best-case overhead is null in addition to the normal number of processor instructions that are spent to increase and decrease the subsystem and system ceilings. The worst-case overhead occurs at the start and end of an overrun situation. When the budget depletes while a subsystem has locked a resource, it is replenished with an overrun budget of \(X_i \), which takes 383 instructions. Overrun completion can merely occur when a task unlocks a resource
while consuming overrun budget. The system overhead to update a subsystem’s budget is 735 instructions, i.e. the test for replenishment in the unlock operation adds 10 instructions. Note that the worst-case execution time of an unlock operation and a budget depletion handler can never happen in the same subsystem period, i.e. the jitter caused by the synchronization primitives remains almost the same. These execution times of the primitives must be included in the system analysis by adding these to critical-section execution times, X_{sl}.

2) Memory complexity: The code sizes in bytes of the lock and unlock operations, i.e. 436 and 532 bytes, is higher than the size of plain SRP, i.e. 196 and 192 bytes. This includes two levels of SRP, the overrun mechanism and timer management. The size of the unlock operation is increased compared to our implementation in [9]. However, μC/OS-II’s priority-inheritance protocol has larger sized lock and unlock primitives, i.e. 924 and 400 bytes.

Moreover, each SRP resource has a data structure in (i) each subsystem that shares this resource and (ii) at the global level. These memory requirements are unchanged compared to our earlier two-level SRP implementation [9].

VIII. CONCLUSION

We revisited synchronization protocols based on SRP for two-level fixed-priority scheduled HSFs that prevent budget depletion by an overrun (without payback) mechanism. Whereas the original analysis in [4] is pessimistic, because it does not consider the limited preemptiveness of subsystems during overrun, the improved analysis in [8] is considerably more complicated. We simplified the global schedulability analysis based on the observation that the deadline for each subsystem only holds for its normal budget rather than the sum of its normal and overrun budget. This reduction of complexity compared to the initially improved analysis is particularly useful for dynamic systems where the global analysis is part of a subsystem’s admission test.

Because neither the initial improved analysis nor our novel schedulability analysis is superior, we evaluated our new analysis on an extensive simulation study. Both the initial improved analysis [8] and our novel analysis are especially beneficial when critical sections are relatively long compared to a subsystem’s budget. This enables a tight analysis for HSFs in which a limited number of arbitrary preemptions can reduce architecture-related preemption costs.

Our presented analysis allows a subsystem to have remaining overrun when its normal budget replenishes. Hence, we cannot re-use earlier implementations of the overrun mechanism. We therefore implemented our new overrun mechanism in an OSEK-compliant real-time operating system and showed that its increase in complexity and run-time overheads is only marginal. Because our novel overrun mechanism comes with a tight, simplified analysis and its implementation costs are minor, it provides a promising engineering approach to synchronization protocols for compositional real-time systems.

REFERENCES

