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1
Introduction

Next-generation wireless networks will likely evolve from cellular and small-scale
home networks to large, inter-connected networks that form the backbone for low-
cost internet access. Such large-scale networks are di�cul t to evaluate due to the
complex spatial and temporal interactions among their user s; small networks with
few users, in contrast, are relatively well-understood. Th e study of many-user net-
works requires models that capture distinct aspects of wire less networks such as
interference and the role of medium access control, as well a s tra�c characteristics
and congestion e�ects. Traditional queueing models are una ble to capture the in-
teraction between users, while current models speci�cally geared towards wireless
networks are often limited in scope and network topology, an d do not take tra�c
behavior into account.

In this thesis we develop and examine various mathematical m odels that capture
how users share the wireless medium. We aim to gain a better un derstanding of
wireless networks, and devise schemes to improve their perf ormance. In this chapter
we provide a brief introduction to wireless networks, prese nt an overview of the most
relevant literature, and summarize the results obtained in this thesis.

1.1 Background

A wireless network can be modeled as a collection of nodes (representing users) that
can transmit and receive data. Two nodes can be grouped into a transmitter-receiver
pair to form a link , as shown in Figure 1.1. Here the nodes are represented by cir cles,
while an arrow indicates a link from transmitter to receiver . A node may receive data
from di�erent sources, and can transmit towards various des tinations. Thus, a node
can be associated with multiple links.

A link indicates potential data transmission from the transmitting node to the
receiver, through the wireless medium. Links can be either a ctive or inactive, de-
pending on whether data is currently being transmitted on th at link or not. Let n
denote the number of links, then the network state can be repr esented by a vector
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Figure 1.1: A wireless network consisting of various nodes a nd links.

! ƒ „! 1 ; ! 2 ; : : : ; ! n …, where ! i describes the state of link i as

! i ƒ

(
1; if link i is active ;
0; otherwise :

1.1.1 Interference constraints

Wireless communications are commonly characterized by the ir broadcast nature, as
wireless signals typically propagate in all directions rat her than towards the intended
receiver of the signal only. As a result, nodes may hear many o ngoing transmissions,
including those intended for others. In fact, a transmissio n may not be received
correctly if the intended receiver overhears too much con�i cting activity. We say in
this case that the transmission has su�ered a collision due t o the interference caused
by other ongoing transmissions.

Wireless signals are transmitted at a certain power, and the success of a transmis-
sion depends on its signal strength as seen by the receiver co mpared to the strength
of the competing transmissions. The strength of a signal dec reases with distance, so
a wireless network can support multiple simultaneous succe ssful transmissions, but
only if the active links are su�ciently far apart.

We assume that all activity conducted by competing links con tributes to the inter-
ference, and that all interference is treated as noise. In pr inciple this need not be the
case since clever coding schemes may mitigate or even comple tely cancel the adverse
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e�ect of simultaneous transmissions on each other, cf. [48] . However, such coding
schemes are di�cult to implement, and are not very common in p ractice.

Whether or not a transmission is successful depends on many d i�erent factors
such as fading, shadowing and capture e�ects, which are di�c ult to determine exactly.
In the research literature, various models are presented th at describe in detail when
a transmission is successful. We will focus on the physical model and the protocol
model [30].

� Physical model. We denote by Pi the power at which the signal over link i is
transmitted, and Gij represents the fraction of signal strength remaining (path
loss) after traveling from the transmitter of link i to the receiver of link j . Thus,
the receiver of link i overhears a signal of strength Pj Gj i ! j coming from the
transmitter of link j . In the physical model the success of a transmission is
determined by the ratio of the strength of the transmission s ignal at the receiver
and the background noise N plus noise it receives from other transmissions.
A transmission on link i is considered successful if and only if the Signal to
Interference-plus-Noise Ratio (SINR) is above a certain th reshold � :

SINRi ƒ
Pi Gii

N ‚
P

j ” i Pj Gj i ! j
� �: (1.1)

Denote by X i and Yi the locations of the transmitter and receiver of link i , re-
spectively. A common assumption is that signal strength att enuates according
to a power law, i.e., Gij ƒ jj X i � Yj jj � 
 , with jj � jj the Euclidian distance and

 the path loss exponent . This exponent depends on the environment, and is
usually assumed to take values between 
 ƒ 2 (free space) and 
 ƒ 4 (lossy
environments).

� Protocol model. According to this model, a transmission on link i is successful
if and only if

jj X j � Yi jj � „1 ‚ � …jj X i � Yi jj ; 8 j ” i : ! j ƒ 1; (1.2)

for some guard zone � > 0. Essentially, (1.2) says that all links within a certain
distance of the receiver have to be inactive in order for a tra nsmission to be
successful; the required distance is determined by the guar d zone. If all links
have the same length d (distance between transmitter and receiver), then (1.2)
gives rise to an interference range � ƒ „1 ‚ � …dcentered around the receiving
node of a link. A transmission over this link will be successf ul if and only if no
nodes within the interference range are transmitting.

If, depending on the choice of model, (1.1) or (1.2) is satis� ed for every active
link i , all ongoing transmissions are successful. We say that such a state ! 2 f 0; 1gn

is collision-free, and denote by 	 � f 0; 1gn the set of all collision-free states.
The physical model gives a more detailed description of the w ireless network com-

pared to the protocol model, as it factors in transmission po wer and signal attenua-
tion, rather than just the distance between nodes. In regime s in which only one or a
few links signi�cantly contribute to the interference, the physical model and protocol
model are very similar. This is the case for instance if nodes are far apart (sparse net-
works) or if the signal strength (in the physical model) decr eases rapidly with distance
(
 large).
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To decide whether a state ! 2 	 remains collision-free after activating some link i ,
we have to compute the mutual interference between link i and the links already
active. For the physical model, a transmission on link i will a�ect the entire network,
whereas for the protocol model only links j such that jj X i � Yj jj � „1 ‚ � …jj X j � Yj jj
and jj X j � Yi jj � „1 ‚ � …jj X i � Yi jj have to be inspected for activity. We say that
feasibility for the protocol model can be veri�ed locally, a s opposed to globally for
the physical model.

1.1.2 Capacity region

An important measure of the quality of a link is the throughput � i , de�ned as the
expected long-term number of successful packet transmissi ons over link i per time
unit. We denote by � ƒ „� 1 ; � 2 ; : : : ; � n …the throughput vector that describes the
throughput of all links, and we are interested in the capacit y region C of the network,
de�ned as all possible values that the throughput vector can take, given the network
structure.

The throughput vector is restricted by the interference con straints ((1.1) or (1.2),
for instance), and can be attained if and only if there exists some time-sharing of the
collision-free states that yields these throughputs. Assu ming that transmissions are
completed at unit rate, the capacity region of the network ca n be written as the convex
hull of 	 :

C ƒ conv „ 	 …ƒ
�
� 2 †0; 1‡n j � ƒ

X

! 2 	

�„ ! …! ;
X

! 2 	

�„ ! …ƒ 1; �„ ! …� 0 8 ! 2 	
	
:

(1.3)

The rate at which packets are transmitted may vary between li nks, depending on
packet length, transmission power, and channel state among other things. Denote
by Ri the transmission rate across link i , de�ning the expected number of packets
that are transmitted per time unit if link i is active. The capacity region in this case
is similar to (1.3), only with the activity of all links weigh ted with their respective
transmission rates. Transmission rates may also �uctuate o ver time, due to changes
in the channel conditions. Assuming that the feasible trans mission rates evolve in a
Markovian fashion over a �nite number of channel states, the capacity region is given
by a weighted average over the capacity region associated wi th each channel state
(see [67]).

The above description is limited to a single-hop capacity re gion, where all tra�c is
transmitted directly from source to destination. Alternat ively one may look at a multi-
hop capacity region, by allowing intermediate nodes to forw ard messages intended for
others. The advantage of multi-hop communication is that by routing tra�c through a
series of nearby nodes, the transmit power required for each individual transmission
is reduced, which may increase spatial reuse. Moreover, the use of intermediate nodes
allows for communication over larger distances than would b e possible otherwise. The
multi-hop capacity of a network can then be computed by varyi ng the transmit power
and packet routing. This approach is taken in [30], where it i s investigated how the
multi-hop network capacity scales with the number of nodes, under the assumption
of equal throughputs for every source-destination pair in t he network. It is shown
that the throughput for every source-destination pair scal es like m � 3=2 as m ! 1 .
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This work has generated a lot of interest in scaling laws for w ireless network capacity
under various assumptions; see [103] for an overview.

1.1.3 Tra�c modeling

There exists a variety of approaches for modeling the arriva l of tra�c into the net-
work. The bulk of this thesis is concerned with the saturated model, where links are
assumed to always have packets available for transmission. This model represents
congested tra�c conditions as well as networks that operate under certain network-
layer protocols that ensure that links are never starved.

The second tra�c scenario under consideration is the unsaturated model, where
packets arrive at the links according to some external arriv al process, see Figure 1.2.
Packets are temporarily stored in a bu�er at the correspondi ng link pending transmis-
sion. In the unsaturated scenario bu�ers may occasionally b e empty, during which
time the corresponding link cannot activate. The number of p ackets stored in a bu�er
is called the backlog or queue length of a link. We assume that packets arrive accord-
ing to a renewal process, with � i the packet arrival rate (reciprocal of the expected
inter-arrival time) at link i , and we write � ƒ „� 1 ; � 2 ; : : : ; � n …. In Chapter 4 we analyze
this model under the assumption that packets leave the syste m immediately once
transmitted (Figure 1.2(a)), and in Chapter 8 we consider a m ulti-hop scenario where
packets may be routed between nodes (Figure 1.2(b)).

(a) Single-hop (b) Multi-hop

Figure 1.2: Single-hop and multi-hop unsaturated networks .

In Chapters 2 and 3 we consider a tra�c model where the collect ion of links evolves
over time, so-called �ow-level dynamics . New transmitter-receiver pairs form �ows
that arrive into the system at random times and locations wit h some �nite number
of packets to be transmitted. A �ow will leave the system once it has transmitted all
its packets. This is illustrated in Figure 1.3, which shows t hree snapshots of the net-
work evolution. Alternatively, one may consider a hybrid tr a�c model that combines
persistent �ows and short-lived �ows [54, 55].
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Figure 1.3: An illustration of �ow-level dynamics.

The notion of a capacity region as discussed in Section 1.1.2 is predicated on
the assumption of a �xed set of links, and does not readily app ly in the case with
�ow-level dynamics. However, one could de�ne the throughpu t to be the aggregate
transmission rate over all users, so as to arrive at a scalar q uantity that measures the
total number of packets transmitted.

1.1.4 Medium access control

We have seen that transmissions are subject to certain inter ference constraints: Only
certain subsets of links can be activated simultaneously wi thout giving rise to colli-
sions. Since collisions degrade the network performance, i t is essential to devise algo-
rithms that regulate the link activity to reduce interferen ce. Many such medium access
control algorithms exist, with di�erent implementations and varying degrees o f e�-
cacy in preventing collisions. We consider both discrete-t ime algorithms, where link
activity can be changed at the beginning of each time slot t ƒ 0; 1; : : : , and continuous-
time algorithms where the set of active links can be modi�ed a t any time instant t � 0.
Throughout this thesis it will be clear from the context whet her t is discrete or con-
tinuous.

We distinguish between two classes of access schemes: scheduled-access algo-
rithms (discrete-time only) and random-access algorithms (both continuous-time and
discrete-time). Random-access algorithms form a class of d istributed, randomized
access schemes, where links decide for themselves when to ac tivate, based on local
information only. Due to their localized nature, and since l ink activity is based to some
extent on chance, random-access algorithms may not entirel y preclude collisions. It
is possible to synchronize all links using message passing a lgorithms, although this
is not required. Consequently, for many random-access algo rithms both slotted and
non-slotted versions exist, such as the Aloha algorithm [2, 73] and the Carrier-Sense
Multiple-Access (CSMA) algorithm [19, 44].

Scheduled-access algorithms implement a time-slotted mec hanism, where in each
slot a new set of links is selected for transmission. Because of the additional coor-
dination among links, scheduled-access algorithms typica lly satisfy the interference
constraints. Scheduled-access algorithms can be implemen ted both in a centralized
and a distributed way. The former employs a centralized enti ty that controls the be-
havior of all links, while in a distributed implementation l inks decide for themselves
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when to activate, based on local information and message pas sing.
In this thesis we focus on two medium access control algorith ms. In Section 1.2 we

describe the MaxWeight scheduling algorithm, a centralize d mechanism that sched-
ules transmissions so as to maximize a certain weight. Secti on 1.3 discusses the
random-access CSMA algorithm, under which links activate a nd deactivate autono-
mously and asynchronously.

1.1.5 Stability region

In Section 1.1.4 we have seen that there exists a wide range of algorithms for sharing
access to the wireless medium. These algorithms vary in impl ementation complexity
and performance. In the case of saturated tra�c conditions w e see that di�erent
algorithms may result in markedly di�erent throughput vect ors.

Throughput is also an important performance measure in the u nsaturated case,
but additionally we can ask ourselves whether the network is stable under a particular
algorithm and given certain tra�c conditions. Stability of the network roughly means
that the throughput of each link is equal to its arrival rate, so it is not overloaded. In
contrast, the throughput of an unstable link is lower than th e arrival rate. We consider
two de�nitions of stability: (i) the queues at the various li nks empty in�nitely often
with �nite expected time (positive recurrence in case the qu eue length process is a
Markov process); and (ii) rate stability, i.e., the departu re rate equals the packet arrival
rate. Note that de�nition (i) is stronger than (ii), because a rate stable system does
not necessarily empty in �nite expected time.

The stability region of a scheduler is de�ned as the set of all arrival rate vectors
that yield a stable network. The stability region of a speci� c policy should be distin-
guished from the capacity region of the entire network. Natu rally, the stability region
of a scheduler is always contained in the capacity region of t he network, since the
latter marks the physical limits of the network transport ca pacity. When the stability
region of a scheduler is identical to (the interior of) the ca pacity region, we say that
this scheduler is throughput-optimal or maximum stable. Id eally we would like to
�nd throughput-optimal schedulers that are applicable in a wide variety of scenarios,
without prior knowledge on the network parameters.

1.2 MaxWeight scheduling

The MaxWeight scheduling algorithm is a time-slotted algor ithm that has gained im-
mense popularity as a powerful concept for achieving maximu m throughput and
queue stability in a wide variety of scenarios. It works in a t ime-slotted fashion, and
schedules a collision-free subset of �ows (links) for trans mission in each slot. Denote
by Ri „t…the number of packets that �ow i could transmit if selected for transmission
in time slot t . Let Q i „t…denote the queue length of �ow i at the beginning of slot t ,
then the MaxWeight scheduling algorithm selects a set of �ow s so as to maximize the
aggregate product of queue length and feasible transmissio n rate:

arg max
! 2 	

nX

i ƒ 1

Q i „t…Ri „t…! i : (1.4)
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transmission is started when the back-o� timer expires. The CSMA algorithm re�nes
Aloha, by introducing a so-called carrier-sensing mechanism that tells nodes to moni-
tor nearby activity [44]. Nodes in back-o� continuously sen se their surroundings, and
freeze the back-o� timer when they observe too much nearby ac tivity. Only when the
measured activity drops below a certain threshold, the back -o� process continues to
count down. This mechanism reduces collisions since it prev ents nearby nodes from
activating simultaneously. The CSMA algorithm is for insta nce implemented in the
well-known IEEE 802.11 standard [1].

The CSMA algorithm is studied in Chapters 4-8, where we mostl y limit ourselves
to the case that nodes have at most one destination, i.e., eac h node is the transmitter
of at most one link. Thus we can uniquely associate every link with its transmit-
ting node, and we can modify the notation and terminology int roduced earlier in this
chapter accordingly. So in the following when we discuss for example the activity ( ! i ),
throughput ( � i ), position ( X i ) and transmit power ( Pi ) of node i , we refer to the corre-
sponding variables of the link to which node i is the transmitter. The transition from
links to nodes is done to simplify notation and terminology o nly, and all our results
hold for the more general model where nodes may have multiple destinations. In fact,
in Chapter 7 we consider a model where nodes are associated wi th two receivers.

Similar to the discussion on interference constraints in Se ction 1.1.1, we may em-
ploy various models to decide whether the carrier-sensing m echanism of a node is trig-
gered given a certain con�guration of active links. Accordi ng to the physical model,
the carrier-sensing mechanism of link i is triggered if

N ‚
X

j ” i

Pj jj X i � X j jj � 
 ! j � �; (1.5)

that is, if the aggregate noise and interference level excee ds some carrier-sensing
threshold � . The protocol model gives rise to a certain carrier-sensing range � such
that the carrier-sensing mechanism is triggered if at least one node within distance �
is transmitting, i.e.,

jj X i � X j jj � �; for some j ” i : ! j ƒ 1: (1.6)

This translates into an undirected con�ict graph , where the vertices of the graph
represent the links of the network, and two links share an edg e if and only if their
transmitters are within sensing range from each other, see F igure 1.4.

1.3.1 Feasible states and collisions

The carrier-sensing mechanism restricts the possible acti vity states that the network
can take since (1.5) or (1.6) has to be satis�ed in order for a n ode i to activate. We
denote by 
 � f 0; 1gn the set of feasible states according to (1.5) or (1.6), i.e., all
states that can be reached under CSMA.For the protocol model , the set of feasible
states corresponds to the incidence vectors of all independ ent sets of the con�ict
graph. Recently it was shown that one can implement an interf erence range even for
the physical model [26]. This is done by modifying the carrie r-sensing mechanism to
monitor changes in the received power rather than the instan taneous power only, and
using these di�erentials to compute the distance to all acti ve nodes.
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�

� min

(a) Sensing range � (b) A con�ict graph

Figure 1.4: Constructing a con�ict graph.

In general, 	 and 
 are di�erent, and neither set necessarily contains the othe r.
Thus there may be collision-free states that are not feasibl e, as well as feasible states
that are not collision-free. These two types of states are re lated to the concept of
exposed nodes and hidden nodes , which are discussed in detail in Chapter 7.

Feasible states that are not collision-free correspond to s tates where one or more
collisions occur. The CSMA algorithm does not necessarily c ompletely preclude col-
lisions, since the carrier-sensing is done by the transmitt ing node, while collisions
occur at the receiving end. Due to this information asymmetr y, the transmitter is not
aware of the exact interference that the receiving node is su bjected to. However, if
the carrier-sensing mechanism is con�gured in a su�ciently conservative manner, we
can completely exclude the possibility of collisions, i.e. , we have that 
 � 	 . This
is done by by choosing a small sensing threshold � (physical model) or setting the
sensing range � su�ciently large (protocol model). Note that by doing so we m ay also
eliminate some collision-free states, e�ectively reducin g the network capacity.

In recent years this tradeo� between network capacity and co llision reduction has
received much attention [50, 57, 104, 107]. Most of these ana lytic studies assume that
the activity of nodes and their back-o� processes are indepe ndent, which greatly sim-
pli�es the analysis. However, the interaction between node s has a large impact on the
performance of the network. The tradeo� between preventing collisions and spatial
reuse is the subject of Chapter 7, where we do take this intera ction into account, by
keeping track of the activity of nodes over time.

1.3.2 CSMA model

We consider a network of n nodes sharing a wireless medium according to a CSMA-
type protocol. The network is described by an undirected con �ict graph „V ; E…, where
the set of vertices V ƒ f 1; : : : ; n g represents the nodes of the network and the set
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of edges E � V � V indicates which pairs of nodes cannot activate simultaneou sly.
In other words, nodes that are neighbors in the con�ict graph are prevented from
simultaneous activity by the carrier-sensing mechanism. A n inactive node is said to
be blocked whenever any of its neighbors is active, and unblo cked otherwise. We
assume for now that the carrier-sensing mechanism is con�gu red such that collisions
are completely precluded; this assumption is relaxed in Cha pter 7.

Consider a scenario where nodes are saturated, i.e., always have packets to trans-
mit. The transmission times of node i are independent and exponentially distributed
with mean 1 =� i . When node i is blocked, it remains silent until all its neighbors are
inactive, at which point it tries to activate after an expone ntially distributed (back-
o�) time with mean 1 =� i . Node i activates if it is still unblocked when the back-o�
timer runs out. If a node �nds itself blocked when the back-o� timer expires, it waits
until all neighboring nodes become inactive once more and th en repeats the back-o�
procedure. Equivalently, we could think of the potential ac tivation epochs of a node
as occurring according to a Poisson process, and actual tran smission periods start-
ing whenever a potential activation event occurs while the n ode is unblocked. For
conciseness, denote � i ƒ � i =� i .

The set 
 of all feasible joint activity states of the network in this c ase corresponds
to the incidence vectors of all independent sets of the con�i ct graph. By the assump-
tion that all collisions are precluded, we have 
 � 	 . Let the network state at time t be
denoted by Y„t…ƒ „Y1„t…; Y2 „t…; : : : ; Yn „t……2 
 , with Yi „t…indicating whether node i
is active at time t (Yi „t…ƒ 1) or not ( Yi „t…ƒ 0). Then f Y„t…gt � 0 is a Markov process
which is fully speci�ed by the state space 
 and the transition rates

r „!; ! 0…ƒ

8
><

>:

� i ; if ! 0 ƒ ! ‚ ei 2 
 ;
� i ; if ! 0 ƒ ! � ei 2 
 ;
0; otherwise :

(1.7)

Here ei denotes the vector of length n with all zeros except for a 1 at position i .
Since Y„t…is reversible (see [11]), the following product-form stati onary distribu-

tion � exists:

� „ ! …ƒ lim
t !1

P„Y„t…ƒ ! …ƒ

(
Z � 1

Q n
i ƒ 1 � ! i

i ; if ! 2 
 ;
0; otherwise,

(1.8)

where

Z ƒ
X

! 2 


nY

i ƒ 1

� ! i
i (1.9)

is the normalization constant that makes � a probability measure. This result is
well known in the context of wireless networks, see e.g. [11, 17, 20, 98]. Chapter 4
describes how this result can be extended to general back-o� times and transmission
durations.

We are interested in the long-term behavior of the network, c haracterized by the
throughput vector � . As active nodes �nish their transmissions at rate � i , and all
transmissions are successful, we have that

� i ƒ � i

X

! 2 


� „ ! …! i : (1.10)
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A loss network consists of J links (not be be confused with links in the wireless
network), where link j has Cj circuits j ƒ 1; 2; : : : ; J . There is a set R ƒ f 1; 2; : : : ; n g
of routes, and calls on route r 2 R each use A j r 2 Z‚ circuits from link j , with Z‚ the
non-negative integers. Calls of type r 2 R arrive according to a Poisson process with
rate � r and have exponentially distributed holding times with mean 1=� r . If upon
arrival of a type- r call fewer than A j r circuits are available for any link j ƒ 1; 2; : : : ; J ,
the call is rejected.

Denote by N r „t…the number of calls in progress on route r at time t , and de�ne
N„t…ƒ „N r „t…; r 2 R …and C ƒ „C1 ; C2 ; : : : ; CJ …. It is well known (see, e.g., [41]) that
the Markov process f N„t…gt � 0 has a unique stationary distribution

�„ n…ƒ lim
t !1

P„N„t…ƒ n…ƒ Z � 1
Y

r 2R

� n r
r

n r !
; n 2 
 ;

where

 ƒ f n 2 ZR

‚ : An � Cg

with component-wise inequality and Z ƒ
P

n2 

Q

r 2R
� nr

r
n r ! the normalization constant.

It is readily seen that the CSMA model is in fact a special inst ance of a loss network,
where the call types correspond to the nodes, and the arrival rate � r is equivalent
to the back-o� rate. The mean call holding times 1 =� r are equivalent to the mean
packet transmission times. Any CSMA model can be represente d as a loss network in
multiple ways. For example, consider a CSMA model on some con �ict graph „V ; E…,
let J ƒ jRj ƒ n and choose Cj ƒ � , the maximum node degree of the con�ict graph.
If we then choose

A j r ƒ

8
><

>:

� ; if j ƒ r ;
1; if f j; r g 2 E;
0; otherwise ;

we see that the resulting loss network is equivalent to the CS MA model. Alternatively,
let Cj ƒ 1, jRj ƒ n and J ƒ j Ej . Then for

A j r ƒ

(
1; if j is an edge to r ;
0; otherwise ;

the resulting loss network is again equivalent to the CSMA mo del.
Despite the extensive literature on loss networks, the appl ication to CSMA models

poses new and challenging questions. Traditionally the mai n focus in loss networks
has been on the loss probability, i.e., the probability that a call arriving into the system
cannot be accepted due to insu�cient capacity at one or more o f its required links.
This loss probability may be written as

Lr ƒ
X

! 2 

! ‚ er 62


� „ ! …: (1.11)

Evaluating (1.11) is computationally expensive since it re quires summing over all pos-
sible system states. Thus much e�ort has gone into designing approximations and
establishing asymptotics for the loss probability. The inv erse question of choosing
the link capacities to attain su�ciently low loss probabili ties has also received con-
siderable attention.
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The main performance measure of CSMA models is the throughpu t (1.10). Al-
though this is related to the loss probability as

� r ƒ � r „1 � Lr …; (1.12)

results on loss networks provide little help in the study of C SMA models. For instance,
most approximations for the loss probability are designed f or the high-capacity regime,
so (1.12) cannot be used to obtain easy approximations for th e throughput. Moreover,
the design questions are di�erent for both models since in lo ss networks one typically
manipulates the link capacities, which is not possible for t he CSMA model.

From the connection with loss networks, it is readily seen th at the stationary dis-
tribution of the joint activity process of the CSMA model is i n fact insensitive to the
distribution of the transmission times, i.e., the stationa ry distribution only depends
on the mean transmission time. Although loss networks are no t insensitive to the
interarrival time distribution, we show in Chapter 4 that CS MA models are insensi-
tive to both back-o� times and transmission durations. The r eason is that the strict
equivalence between the CSMA model and loss networks relies on the back-o� periods
being exponentially distributed. In order to see that, obse rve that in loss networks
the arrival process is not a�ected by the occupancy state, wh ereas in the CSMA model
the back-o� process of a node is suspended when that node is ac tive, and is possibly
frozen by the activity of neighboring nodes. In case the back -o� periods are exponen-
tially distributed, back-o� freezing does not a�ect the act ivity process, so the CSMA
model is equivalent to a loss network. For generally distrib uted back-o� periods this
distinction does become relevant, and no direct analogy wit h loss networks applies.

Another interesting connection appears when we look at the M arkov chain ob-
tained by embedding the Markov process of the CSMA model on tr ansition instants.
This Markov chain in fact is equivalent to the Glauber dynami cs of the hard-core
model [47] from statistical physics. In Section 1.3.5 we des cribe how the connection
is used to design adaptive CSMA algorithms.

1.3.5 Adaptive CSMA

Traditional CSMA assumes that the mean back-o� times and tra nsmission durations
remain �xed over time. Recently, several clever adaptive CS MA-type algorithms have
appeared which achieve throughput-optimality by adjustin g the back-o� rates over
time. In [32, 34], a class of distributed algorithms is propo sed, where nodes ad-
just their back-o� rates based on current backlog, which is d e�ned as the di�erence
between arrived tra�c and transmitted packets, while [72] s uggests to choose the
back-o� rate to be a certain increasing function of the backl og. In [34] it is shown
that these protocols can achieve any throughput vector in th e interior of the capacity
region (1.3).

The key idea of the algorithm in [34] is to adapt the back-o� ra tes of the nodes
according to the di�erence between arrival rate and through put. This di�erence is
exactly the gradient associated with a speci�c convex optim ization problem, the so-
lution of which provides stability, if possible to do so at al l. In [33, 36, 53] it is shown
that the back-o� rates prescribed by this algorithm converg e. This approach can be
used to optimize a utility function of the throughputs, prov iding for example max-min
fairness or maximization of the aggregate throughput.
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simultaneous activity of many links, while restricting the set of active links to certain
collision-free subsets. It turns out that MaxWeight schedu ling and CSMA, although
markedly di�erent, both su�er from performance issues that have the same underly-
ing cause: The algorithms under consideration may consiste ntly schedule unfavorable
states, as is illustrated below.

For example, consider a saturated linear CSMA network of thr ee nodes, with near-
est neighbor blocking, so only nodes 1 and 3 can be active simu ltaneously. Assume
that all nodes activate with rate � i ƒ � so that the mean back-o� time equals 1 =� . For
this small network, the saturation throughputs can be easil y computed using (1.10):

� 1 ƒ
� „ 1 ‚ � …

1 ‚ 3� ‚ � 2
; � 2 ƒ

�
1 ‚ 3� ‚ � 2

; � 3 ƒ
� „ 1 ‚ � …

1 ‚ 3� ‚ � 2
: (1.13)

As was reported in [98], the throughput is highly unfair, and nodes 1 and 3 receive
much better service than the node in the middle. Node 2 can onl y activate when
both outer nodes are silent. As � increases, this event occurs less frequently, and
from (1.13) it is readily seen that node 2 will be completely s tarved as � ! 1 . In
terms of scheduling feasible subsets of nodes, we see that th e CSMA algorithm favors
the state „1; 0; 1…over „0; 1; 0…, leading to unfair throughputs.

A similar phenomenon occurs in MaxWeight scheduling, when a pplied in a setting
with �ow-level dynamics. Consider the same interference st ructure as before, only
with the nodes replaced by regions. New �ows of deterministi c size arrive into one
of the three regions, and at most one �ow per region can be sche duled at any point
in time. So the scheduler can choose to select either a �ow eac h from regions 1 and 3
(schedule „1; 0; 1…), or one �ow from region 2 (schedule „0; 1; 0…). We assume a �xed
transmission rate Ri „t…� 1, so that MaxWeight scheduling selects

! ƒ

(
„1; 0; 1…; if N �

1 „t…‚ N �
3 „t…� N �

2 „t…;
„0; 1; 0…; otherwise ;

with N �
i „t…the size of the largest �ow in region i at time t . If new �ows in region

2 have unit size, and new �ows in regions 1 and 3 have size great er than one, then
the MaxWeight scheduling algorithm selects „1; 0; 1…whenever a new �ow arrives in
either region 1 or 3, irrespective of the number of �ows alrea dy present in region 2.
This causes the number of �ows in region 2 to explode. This beh avior is key to the
instability of MaxWeight scheduling discussed in Chapter 3 .

1.4.1 Instability of MaxWeight scheduling

As already hinted at in the above example, MaxWeight may run i nto di�culties when
confronted with �ow-level dynamics. In Chapters 2 and 3 we de monstrate that in the
presence of �ow-level dynamics the algorithm may no longer b e throughput-optimal,
and we identify two causes for the instability: (i) failure t o fully exploit rate variations;
and (ii) spatial ine�ciency.

In Chapter 2 we consider the inability of MaxWeight scheduli ng to exploit rate
variations, which can be demonstrated in a single-downlink scenario with varying
transmission rates. We identify a simple necessary and su�c ient condition for sta-
bility, and show that MaxWeight policies may fail to provide maximum stability. The









2
Instability of MaxWeight

scheduling

In Section 1.2 we discussed the celebrated MaxWeight schedu ling algorithm, a ver-
satile centralized medium access control mechanism. The po pularity of MaxWeight
scheduling is due to its ability to provide maximum stabilit y, which is shown to hold
in a wide variety of scenarios, but only in case that the syste m consists of a �xed
set of queues with stationary ergodic tra�c processes. In re ality, the collection of
active queues dynamically varies, as �ows eventually depar t while new �ows occa-
sionally start. In the present chapter and in Chapter 3 we wil l demonstrate that the
maximum-stability guarantees of MaxWeight scheduling are no longer valid under
�ow-level dynamics. In this chapter we focus on a point-to-p oint shared wireless
downlink channel with rate variations.

This chapter is organized as follows. In Section 2.1 we prese nt a detailed model
description and in Section 2.2 we derive a simple necessary a nd su�cient condition
for stability in the presence of �ow-level dynamics. Sectio n 2.3 establishes that the
MaxWeight policy may fail to provide maximum stability by tr eating speci�c model
instances where the stability conditions are satis�ed, yet MaxWeight scheduling does
not keep the system stable. In Section 2.4 simulation result s are provided that support
the analytical �ndings and in Section 2.5 we make some conclu ding remarks.
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Proof. We �rst introduce several constants that will be used. Let � ƒ 1
2 „1 � �…=„K ‚

1… >0 and de�ne Zk ƒ min f Rmax
k ; � kE†Bk ‡=� g, � k :ƒ P„R k � Zk… >0, � :ƒ min kƒ 1;:::;K � K

and N �;� :ƒ min f m : „1 � �…m � � g. Denote � k ƒ †P„R k > 0…‡� 1 < 1 , let Lk ƒ min f l :P 1
i ƒ l ‚ 1 i P„Bk ƒ i…� �=„� k � k…g, and observe that Lk < 1 since E†Bk ‡ < 1 .

We consider a scheduling strategy with the following proper ty: it serves a class- k
�ow that either (i) has a feasible transmission rate Zk or higher or (ii) has a residual
size Lk or larger and a positive feasible transmission rate, whenev er possible. Ties
are broken arbitrarily. In order to prove stability, we have to show that the Markov
chain N„t…is positive recurrent.

De�ne the Lyapunov function:

V„n…ƒ
KX

kƒ 1

� LkX

i ƒ 1

n k
i

�
i

Zk

�
‚ � k

1X

i ƒ Lk ‚ 1

in k
i

�
;

with n ƒ „n 1 ; : : : ; n K …and nk ƒ „n k
1 ; n k

2 ; : : : ….
The function V„n…provides a measure for the total amount of work in the system

in terms of the total number of slots required for the service of all currently present
�ows, assuming that class- k �ows of residual size no larger than Lk are always served
at rate Zk , while class- k �ows of residual size of at most Lk are served at rate � � 1

k ƒ
P„R k > 0….

We can write the drift as

V„N„t ‚ 1……� V„N„t……ƒ
KX

kƒ 1

I k „t…� D„t…;

with

I k „t…ƒ
LkX

i ƒ 1

�
i

Zk

�
A k

i „t…‚ � k

1X

i ƒ Lk ‚ 1

iA k
i „t…; (2.1)

re�ecting the increase in the workload due to the arrival of c lass-k �ows, and

D„t…ƒ

&
l„t…
Zk„t…

'

1 f 1� l„t…� Lk„t…g ‚ � k„t…l„t…1 f l„t…>Lk„t…g �

&
l„t…� r „t…

Zk„t…

'

1 f 1� l„t…� r „t…� Lk„t…g

� � k„t…„l„t…� r „t……1 f l„t…� r „t…>Lk„t…g (2.2)

representing the decrease in the workload due to the service of �ows. The conditional
drift may then be written as:

E†V„N„t ‚ 1……� V„N„t……j N„t…ƒ n‡ ƒ
KX

kƒ 1

E†Ik „t…‡� E†D„t…j N„t…ƒ n‡: (2.3)

De�ne

C ƒ
�
n j

KX

kƒ 1

nk < N �;� and
KX

kƒ 1

sk ƒ 0
	
:

It may be shown that

E†Ik „t…‡� � k ‚ 2�; (2.4)

E†D„t…j N„t…ƒ n‡ � 1 � �; n 62C: (2.5)
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with n ƒ „n 1 ; : : : ; n K …, nk ƒ „n k
1 ; qk

1 ; n k
2 ; qk

2 ; : : : …, qk
l ƒ „q k

l1 ; qk
l2 ; : : : …, qk

l � ƒ
P 1

j ƒ 1 qk
lj ,

qk
� m ƒ

P 1
i ƒ 1 qk

im . The above function provides a measure for the total workloa d and
weighted aggregate residual lifetime of all the �ows presen t in the system.

Note that

V„N„t ‚ 1……� V„N„t……ƒ
KX

kƒ 1

I k „t…‚ �
KX

kƒ 1

Jk „t…� �
KX

kƒ 1

Ek „t…� D„t…; (2.6)

with

I k „t…ƒ
� LkX

i ƒ 1

A k
i � „t…

�
i

Zk

�
‚ � k

1X

i ƒ Lk ‚ 1

iA k
i � „t…

�
;

re�ecting the increase in the workload due to the arrival of c lass-k �ows,

Jk „t…ƒ
MkX

j ƒ 1

jA k
� j „t…‚ &

1X

j ƒ Mk ‚ 1

jA k
� j „t…;

with A k
i � „t… ƒ

P 1
j ƒ 1 A k

ij „t…, A k
� j „t… ƒ

P 1
i ƒ 1 A k

ij „t…, representing the increase in the
aggregate residual lifetime due to the arrival of class- k �ows. Moreover,

D„t…ƒ

&
l„t…
Zk„t…

'

1 f 1� l„t…� Lk„t…g ‚ � k„t…l„t…1 f l„t…>Lk„t…g

�

&
l„t…� r „t…

Zk„t…

'

1 f 1� l„t…� r „t…� Lk„t…g � � k„t…„l„t…� r „t……1 f l„t…� r „t…>Lk„t…g

captures the decrease in the workload due to the service of in active �ows, and

Ek „t…ƒ
MkX

j ƒ 1

Q k
� j „t…‚ &

1X

j ƒ Mk ‚ 1

Q k
� j „t…

corresponds to the decrease in the aggregate residual lifet ime due to the aging of
active class- k �ows.

Conditioning the drift (2.6) on the number of �ows present,

E†V„N„t ‚ 1……� V„N„t……j N„t…ƒ n‡

ƒ
KX

kƒ 1

E†Ik „t…‡‚ �
KX

kƒ 1

E†Jk „t…‡� �
KX

kƒ 1

E†Ek „t…j N„t…ƒ n‡ � E†D„t…j N„t…ƒ n‡: (2.7)

De�ne

C ƒ
�
n j

KX

kƒ 1

nk < N �;� and
KX

kƒ 1

sk ƒ 0
	
:

It may be shown that

E†Ik „t…‡� � k ‚ 2�; (2.8)

E†Jk „t…‡� 2' k ; (2.9)

E†Ek „t…j N„t…ƒ n‡ � &; n 62C; (2.10)

E†D„t…j N„t…ƒ n‡ � 1 � � n 62C: (2.11)
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Equations (2.8)-(2.11) are derived in Lemma 2.2, which is pr esented and proven in
Appendix 2.A.

De�ne the set

Ĉ ƒ
�
n j

KX

kƒ 1

nk � N �;� and
KX

kƒ 1

sk ƒ 0 and
KX

kƒ 1

qk � & and
KX

kƒ 1

s0
k ƒ 0

	
:

Suppose n � Ĉ. Then either
P K

kƒ 1 qk > & or
P K

kƒ 1 s0
k � 1 or n � C. If n � C, then

the conditional drift is bounded from above by

� ‚ 2K� ‚ 2�' � 1 ‚ � ƒ � ‚ „2K ‚ 3…�� 1 ƒ � �:

If
P K

kƒ 1 qk > & or
P K

kƒ 1 s0
k � 1, then the conditional drift is bounded from above by

� ‚ 2K� ‚ 2�' � �& ƒ � ‚ „2K ‚ 3…�� 1 ƒ � �:

Combining Equations (2.7)-(2.11) we obtain

E†V„N„t ‚ 1……� V„N„t……j N„t…ƒ n‡ � � �;

for any n � Ĉ. In addition, it is easily veri�ed that E†V„N„t ‚ 1……j N„t…ƒ n‡ < 1 for
any n 2 Ĉ.

Inspection of the Foster-Lyapunov drift criteria [62] then shows that the Markov
chain N„t…is positive recurrent, so the system is stable.

2.3 Instability of MaxWeight scheduling

In this section we establish that MaxWeight scheduling may f ail to provide maximum
stability. Speci�cally, we analyze two model instances whe re the su�cient condition
stated in the previous section is satis�ed, yet the MaxWeigh t strategy does not keep
the system stable. For the sake of tractability, we focus on r elatively simple models
with instantaneous tra�c and just a single class of �ows. In t he next section we
present extensive simulation results to demonstrate that t he instability may also occur
in more complex scenarios with gradual tra�c that do not lend themselves easily to
an analytical treatment.

Example 2.1. In this example we consider a single class of �ows, and for con venience
of notation we omit the subscript indicating the class. Othe rwise the notation is
identical to that used in Section 2.2. Flows start according to a Bernoulli process,
i.e., in each time slot either a �ow starts with probability � or no �ow starts with
probability 1 � � , independent from slot to slot. The service requirement of e ach �ow
is a constant B ƒ 2D ‚ 1 for some integer D � 1. The feasible transmission rate of
a �ow is either D ‚ 1 with probability p or 2 D ‚ 1 with probability 1 � p , 0 < p < 1,
so Rmax ƒ 2D ‚ 1. The feasible transmission rates are independent across t ime and
among di�erent �ows.

It is readily seen that � ƒ 1 and so � ƒ � . Theorem 2.1 states that � ƒ � < 1 is a
su�cient condition for stability to be achievable. We now sh ow that the MaxWeight
scheduling strategy fails to achieve stability for � ƒ � > 1=„1 ‚ p…. The reason for the
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potential instability may be explained as follows. When a �o w starts, the MaxWeight
strategy will immediately serve it in the next slot, regardl ess of whether it has feasible
rate D ‚ 1 or 2 D ‚ 1. To see that, observe that older �ows present in the system w ill
necessarily be of size D , and have no chance to be selected in competition with a new
�ow of size 2 D ‚ 1. In case the new �ow has feasible rate D ‚ 1, it will require an
additional slot at some later point for the service to be comp leted. In other words, the
MaxWeight strategy `wastes' a second slot on the service of � ows whose initial feasible
rate is D ‚ 1, whereas a single slot would su�ce under a more cautious str ategy. More
speci�cally, since the expected number of slots required pe r �ow is 1 ‚ p , it follows
that � > 1=„1 ‚ p…precludes stability.

Remark 2.2. We can extend the example of instability to a slightly more ge neral set-
ting. Consider, as in the situation described above, a syste m with a single class of
�ows. Flows start according to a Bernoulli process, i.e., in each time slot either a �ow
starts with probability � or no �ow starts with probability 1 � � , independent from
slot to slot. The service requirement of each �ow is a constan t B. In addition to Rmax ,
we also introduce Rmin ƒ min f i : P„R ƒ i… > 0g. Assume now that feasible service
rates are such that

„B � Rmin …� Rmax < B � Rmin :

It is easy to see that this condition implies that a �ow enteri ng the system will im-
mediately get scheduled. Hence, the average number of slots required for the service
of an arbitrary �ow is bounded from below by

1 ‚
RmaxX

i ƒ 1

�
B � i
Rmax

�
P„R ƒ i…: (2.12)

Thus, stability is precluded if

�

0

@1 ‚
RmaxX

i ƒ 1

�
B � i
Rmax

�
P„R ƒ i…

1

A > 1:

Note that the quantity in (2.12) is strictly smaller than dB=Rmax e, provided that
Rmin < R max .

Example 2.2. We discuss a second scenario where the MaxWeight strategy fa ils to
achieve maximum stability. As before, �ows start according to a Bernoulli process,
i.e., in each time slot either a �ow starts with probability � or no �ow starts with
probability 1 � � , independent from slot to slot. The service requirement of e ach �ow
is a constant B. For convenience, we assume B ƒ 8D for some integer D � 1. The
feasible transmission rate of a �ow is either 1 with probabil ity p or 2 with probability
1 � p , 0 < p < 1. The feasible transmission rates are independent across t ime and
among di�erent �ows. In this case, Theorem 2.1 states that st ability can be achieved
as long as � ƒ 4�D < 1.

Let N i „t…denote the number of �ows of size i at time t . It may be shown that for
� � 1, the process „N 3D ‚ 1 „t…; N3D ‚ 2 „t…; : : : ; NB„t……of �ows of size 3 D ‚ 1 or greater is
stable. This makes sense since large �ows receive priority, and the onset of instability
manifests itself in the growth of the number of small �ows. It then follows that the
system spends a non-negligible fraction of time in states wh ere all �ows of size 3 D ‚ 1
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or greater have rate 1 and there is at least one �ow of size grea ter than 6 D ‚ 1. In
these states, the MaxWeight strategy will serve a �ow at rate 1. Similar to the previous
scenario, this means that the fraction of time that transmis sion rate 1 is used, does
not approach 0 as � " 1, and instability follows.

2.4 Numerical experiments

In this section we present simulation results that con�rm th e instability of MaxWeight
scheduling, as well as clarify the nature of the instability . All simulations consist of
a single run of 10 5 time slots. In each slot, a new �ow starts with probability � .

The �rst scenario we consider is Scenario II from Section 2.3 , with D ƒ 2. Figure 2.1
shows the number of bits in the system, plotted for various va lues of � . Although the
condition � < 1 ensures the existence of a stable scheduling strategy in th is scenario,
it is easily seen that this is not su�cient for the MaxWeight p olicy to achieve stability.
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Figure 2.1: The number of bits in the system plotted against t ime under MaxWeight
scheduling, for various values of � .

From this point on, we consider gradual tra�c. For the durati on of the activity pe-
riod of a �ow, a single bit enters in each slot. The length of th is period is geometrically
distributed with parameter p. In Figure 2.2, three two-class scenarios are presented.
Flows belong to either of the classes with equal probability , and the transmission rates
are geometrically distributed with parameter q. Hence, Rmax ƒ 1 , and the necessary
stability condition found in Proposition 2.1 simpli�es to � < 1. Besides the sample
path for MaxWeight scheduling, we also plot the behavior of M axRate scheduling, a
somewhat simpler version of the algorithm used in Theorem 2. 1 and 2.2, in which the
�ow with the highest rate is scheduled. In each of these �gure s, MaxRate scheduling
provides stability, whereas MaxWeight scheduling fails to do so. Note that although
the MaxWeight scheduling policy is unstable in the cases pre sented, it is still possible
for particular classes of �ows to be stable. This is in contra st to MaxWeight scheduling
in the static scenario.

Figure 2.3 displays the number of bits over time in a single-c lass scenario when
the transmission rates can assume only two possible values.
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2.A Auxiliary results

Lemma 2.1. In the case of instantaneous tra�c, and under the policy de�n ed in the
proof of Theorem 2.1

E†Ik „t…‡� � k ‚ 2�;

E†D„t…j N„t…ƒ n‡ � 1 � �; n 62C:

Proof. Note that

� kE†dBk =Zke‡ � � k max f E†dBk =Rmax
k e; E†d�B k =„� k E†Bk ‡…‡‡g

� � k max f max f E†dBk =Rmax
k e‡;1gg; 1 ‚ �=� kg � max f � k ; � k ‚ � g

� � k ‚ �:

We �rst derive an upper bound for E†Ik „t…‡. By rewriting (2.1) we obtain

E†Ik „t…‡ƒ
LkX

i ƒ 1

�
i

Zk

�
E†Ak

i „t…‡‚ � k

1X

i ƒ Lk ‚ 1

i E†Ak
i „t…‡

ƒ � k

� LkX

i ƒ 1

�
i

Zk

�
P„Bk ƒ i…‚ � k

1X

i ƒ Lk ‚ 1

i P„Bk ƒ i…
�

ƒ � k

�
E†

�
Bk

Zk

�
‡ ‚ � k

1X

i ƒ Lk ‚ 1

„i �
�

i
Zk

�
=� k …P„Bk ƒ i…

�
� � k ‚ 2�: (2.13)

From (2.2) it can be seen that

D„t…� 1 f 1� l„t…� Lk„t…;r „t…� Zk„t…g ‚ � k„t…1 f l„t…>Lk„t…;r „t…>0g

ƒ 1 f 1� l„t…� Lk„t…;r „t…� Zk„t…g ‚ †P„R k„t… > 0…‡� 11 f l„t…>Lk„t…;r „t…>0g: (2.14)

Now, let Esmall „t…be the event that there is at least one class- k �ow in time slot t
of residual size no larger than Lk with feasible transmission rate Zk or higher. Let
Elarge „t…be the event that there is at least one class- k �ow in time slot t of residual
size Lk ‚ 1 or larger with a non-zero feasible transmission rate.

Note that

1 f l„t…>Lk„t…;r „t…>0g ƒ 1 f l„t…� Lk„t…‚ 1;r „t…>0;Esmall „t…g ‚ 1 f l„t…>Lk„t…;r „t…>0; �Esmall „t…g

ƒ 1 f l„t…>Lk„t…;r „t…>0;Esmall „t…g ‚ 1 f Elarge „t…;�Esmall „t…g: (2.15)

Further observe

1 f l„t…� Lk„t…;r „t…� Zk„t…g ‚ 1 f l„t…>Lk„t…;Esmall „t…g ƒ 1 f Esmall „t…g ƒ 1 � 1 f �Esmall „t…g: (2.16)

Combining (2.14)-(2.16) we deduce that

D„t…� 1 � 1 f �Esmall „t…g ‚ †P„R k„t… > 0…‡� 11 f Elarge „t…;�Esmall „t…g:
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Thus,

E†D„t…j N„t…ƒ n‡

ƒ 1 � P„ �Esmall „t…j N„t…ƒ n…‚ †P„R k„t… > 0…‡� 1P„E large „t…;�Esmall „t…j N„t…ƒ n…

ƒ 1 � P„ �Esmall „t…j N„t…ƒ n…„1 � †P„R k„t… > 0…‡� 1P„E large „t…j N„t…ƒ n……: (2.17)

Let sk ƒ
P 1

i ƒ Lk
n k

i . If
P K

kƒ 1 sk > 0, then P„E large „t…j N„t…ƒ n…� min kƒ 1;:::;K P„R k >

0…, so that †P„R k„t… > 0…‡� 1P„E large „t…j N„t… ƒ n… � 1. If
P K

kƒ 1 nk � N �;� , then
P„ �Esmall „t…j N„t…ƒ n…� „1 � �…N �;� � � . Then we obtain from (2.17) that

E†D„t…j N„t…ƒ n‡ � 1 � � (2.18)

for any n � C.

Lemma 2.2. In the case of gradual tra�c, and under the policy de�ned in th e proof of
Theorem 2.2

E†Ik „t…‡� � k ‚ 2�;

E†Jk „t…‡� 2' k ;

E†Ek „t…j N„t…ƒ n‡ � &; n 62C;

E†D„t…j N„t…ƒ n‡ � 1 � � n 62C:

Proof. As the arrival process of new �ows is the same for both instant aneous tra�c
and gradual tra�c, we conclude from (2.4) that

E†Ik „t…‡� � k ‚ 2�:

Next we establish an upper bound for E†Jk „t…‡:

E†Jk „t…‡ƒ
MkX

j ƒ 1

j E†Ak
� j „t…‡‚ &

1X

j ƒ Mk ‚ 1

j E†Ak
� j „t…‡

ƒ � k

� MkX

j ƒ 1

j P„D k ƒ j…‚ &
1X

j ƒ Mk ‚ 1

j P„D k ƒ j…
�

ƒ � k

�
E†Dk ‡ ‚ &

1X

j ƒ Mk ‚ 1

j„ 1 � 1=&…P„D k ƒ j…
�

� 2' k :

We proceed with a lower bound for E†Ek „t…j N„t…ƒ n‡:

E†Ek „t…j N„t…ƒ n‡ ƒ
MkX

j ƒ 1

qk
� j ‚ &

1X

j ƒ Mk ‚ 1

qk
� j :

Thus E†Ek „t…j N„t…ƒ n‡ � & whenever qk ƒ
P Mk

j ƒ 1 qk
� j � & or s0

k ƒ
P 1

j ƒ Mk ‚ 1 qk
� j � 1.

We turn to a lower bound for E†D„t…j N„t…ƒ n‡. Recall

C ƒ f n j
KX

kƒ 1

nk < N �;� and
KX

kƒ 1

sk ƒ 0g:







3
Spatial inef�ciency of MaxWeight

scheduling

In the previous chapter we have seen that the MaxWeight sched uling algorithm may
fail to achieve maximum stability in a setting with �ow-leve l dynamics. The insta-
bility examples in that chapter all consider a single-downl ink wireless channel with
time-varying transmission rates. The more challenging pro blem, however, arises in
networks where certain subsets of the links can be activated simultaneously subject
to interference constraints. In the present chapter we show that MaxWeight schedul-
ing policies may fail to provide maximum stability in such sc enarios as well, even in
the absence of any rate variations. We show that the potentia l instability e�ects can
be countered by implementing a region-based version of MaxW eight scheduling.

This chapter is organized as follows. In Section 3.1 we provi de a detailed model
description, and in Section 3.2 we demonstrate the potentia l instability of MaxWeight
scheduling through several examples. In Section 3.3 we exam ine the performance of
region-based scheduling in two-dimensional networks with an arbitrary spatial tra�c
density. Section 3.4 o�ers some concluding remarks.
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3.1 Model description

We consider a time-slotted wireless system on some space S. Tra�c consists of �nite-
sized �ows that enter the system at random, and leave once ful ly served. Each arriving
�ow is associated with a certain location in S and a �nite size, as will be further
described for speci�c model instances later. In each time sl ot, a centralized scheduler
selects a subset of �ows for transmission. In the present cha pter we assume for
simplicity that the total size of a �ow is known upon arrival, and no further tra�c
of that �ow will arrive. Most of the results can be extended to a setting with gradual
tra�c, where tra�c of a �ow arrives over time.

A subset of points in S is said to be feasible if �ows in these locations can be sched-
uled simultaneously. The function F„� …indicates whether or not a subset of points
is feasible, i.e., given n �ows with distinct locations X1 ; : : : ; X n 2 S , F„f X1 ; : : : ; X n g…
equals 1 if these �ows can be scheduled simultaneously and is 0 otherwise. Flows
in the same location can never be scheduled simultaneously. A prototypical scenario
would be that F„f X1 ; : : : ; X n g…ƒ 1 if and only if kX i � X j k � d for all i ” j , which corre-
sponds to a reuse distance d, and is similar in spirit as the protocol model. However,
the feasibility function could also be based on the physical model for example.

In each time slot a certain subset of �ows gets selected for se rvice, as governed
by the applicable scheduling strategy, subject to the feasi bility constraints. Each time
a �ow gets scheduled, its residual size is reduced by 1, and a � ow leaves the system
once it has been served to completion i.e., its size reaches 0 . The subset of �ows
selected by the scheduling strategy may depend on the locati ons X i „t…and residual
sizes Q i „t…, i 2 I„t…, with I„t…indexing the �ows present in time slot t . In particular,
the MaxWeight scheduling strategy selects a feasible subse t of �ows J � „t… � I„t…,
F„J � „t……ƒ 1, of maximum aggregate residual size, i.e.,

X

j 2 J � „t…

Q j „t…ƒ max
J� I„t…;F„J…ƒ 1

X

j 2 J

Q j „t…: (3.1)

The main reason for assuming unit transmission rates is to st ress the fact that
the instability phenomena demonstrated in later sections r esult from persistent spa-
tial ine�ciency rather than rate heterogeneity. Possible r ate heterogeneity induces
priorities among �ows, which may exacerbate the spatial ine �ciency and render the
system even more prone to potential instability e�ects.

3.2 Instability of MaxWeight Scheduling

In this section we present several illustrative examples wh ere the MaxWeight schedul-
ing strategy fails to achieve maximum stability.

Example 3.1. We �rst consider a network with three regions as shown in Figu re 3.1.
Transmissions in region 2 interfere with transmissions in b oth region 1 and region 3,
and transmissions in regions 1 and 3 do not interfere with eac h other. Flows arrive
at region i at a rate � i (per time slot) and have initial size Bi . Denote by � i ƒ � i E†Bi ‡
the tra�c intensity at region i . We assume that

� 1 ‚ � 2 < 1 and � 3 ‚ � 2 < 1;
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or equivalently,

� 2 < 1 � max f � 1 ; � 3g: (3.2)

It is easily seen that the latter condition is necessary for s tability to be achievable, and
in fact also su�cient under mild independence assumptions. A scheduling strategy
that can stabilize the network when (3.2) holds is as follows . At each time slot, sched-
ule a �ow in region 2 with probability � 2 ‚ � , or schedule a �ow in both regions 1
and 3, with probability max f � 1 ; � 3g ‚ � , where � ƒ 1� � 2 � max f � 1 ;� 3g

2 .
Now suppose B2 � 1, and recall that the MaxWeight scheduling strategy as de�n ed

in the general network model of the previous section selects a set of �ows with max-
imum aggregate residual size. Thus the MaxWeight strategy n ever schedules a �ow
in region 2 as long as a �ow with a residual size of 2 or larger is present in region 1
or region 3. Hence the scheduling of �ows of residual size 2 or larger in region 1
and region 3 is independent from each other. Also, the fracti on of time that a �ow
of residual size 2 or larger gets scheduled in region i , is � i „E†Bi ‡ � 1…ƒ � i � � i . It
follows that the fraction of time that a �ow in region 2 gets sc heduled, is bounded
from above by

„1 � � 1 ‚ � 1…„1 � � 3 ‚ � 3…:

Thus a necessary condition for MaxWeight scheduling to achi eve stability is � 2 �
„1 � � 1 ‚ � 1…„1 � � 3 ‚ � 3…. When the � i 's (i ƒ 1; 3) are small and the E†Bi ‡'s (i ƒ 1; 3)
are large, the latter condition `approaches' � 2 � „1 � � 1…„1 � � 3…, which is a more
stringent inequality than the su�cient condition (3.2).

region 1

region 2

region 3

Figure 3.1: An example of a spatial wireless network where Ma xWeight scheduling is
not throughput-optimal.

In Example 3.1, the stabilizing strategy either schedules b oth region 1 and region 3,
or schedules region 2. The MaxWeight policy, however, tends to serve �ows with large
backlogs, so �ows in regions 1 and 3 are served with priority w hen their residual sizes
are greater than or equal to 2. Consequently, the MaxWeight p olicy schedules a �ow
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in region 1 (region 3) even when region 3 (region 1) is empty, w hich leads to ine�cient
spatial reuse. Thus, the MaxWeight policy fails to achieve m aximum stability.

Example 3.1 illustrates the spatial ine�ciency of MaxWeigh t scheduling by care-
fully constructing the regions where �ows arrive. Next we pr esent a further example
where we consider a one-dimensional space (a ring) with unif ormly distributed arrival
locations. We assume that all �ows are of the same size, and sh ow that even in this
uniform tra�c scenario, MaxWeight scheduling fails to achieve thro ughput optimality.

Example 3.2. Let N � 1 and consider a ring with unit circumference and reuse dis-
tance d ƒ 2„N ‚ 1…=„„2N ‚ 3…„3N ‚ 2……, partitioned into „2N ‚ 3…„3N ‚ 2…intervals
of equal size, see Figure 3.2. In each time slot, either exact ly „2N ‚ 3…�ows arrive
with probability a, each of size B ƒ 2, at locations uniformly distributed in the in-
tervals M ‚ j„ 3N ‚ 2…, j ƒ 1; 2; : : : ; „ 2N ‚ 3…, where M is uniformly distributed on
1; 2; : : : ; 3N ‚ 2, or no �ows arrive at all with probability 1 � a.

d ƒ 4=25

Figure 3.2: A ring with unit circumference, reuse distance d ƒ 4=25, partitioned into
25 intervals of equal size ( N ƒ 1).

Consider a strategy that generates a random variable L uniformly distributed on
1; 2; : : : ; 2N ‚ 3, and then selects an arbitrary �ow for service from each of t he intervals
L ‚ i„ 2N ‚ 3…, i ƒ 0; 1; : : : ; 3N ‚ 1, if available. Note that the strategy respects the
reuse distance, and achieves stability as long as the aggreg ate tra�c intensity in each
interval, 2 a=„ 3N ‚ 2…, is less than the fraction of time slots that each interval ge ts
selected for service, 1 =„2N ‚ 3…, or equivalently, if a < a„N… ƒ „3N ‚ 2…=„4N ‚ 6….
Note that a„N… ! 3=4 as N ! 1 . Also, the maximum size of a feasible subset of
points is M„N…ƒ

� „2N ‚ 3…„3N ‚ 2…
2„N ‚ 1…

�
, and the total tra�c intensity equals � ƒ 2a„ 2N ‚ 3…,

so the necessary condition � < M for stability takes the form

a < b„N… ƒ
1

2„2N ‚ 3…

�
„2N ‚ 3…„3N ‚ 2…

2„N ‚ 1…

�
:

Observe that b„N… ! 3=4 as N ! 1 , and thus the above-described strategy in fact
achieves maximum stability for large values of N .

It is easily veri�ed that in each time slot with arriving �ows , the MaxWeight strategy
selects all 2 N ‚ 3 of them for service, while in a time slot without any arrival s, it can
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serve at most 3 N ‚ 2 tra�c units, so the expected total number of tra�c units ser ved
per time slot is bounded from above by a„ 2N ‚ 3…‚ „1 � a…„3N ‚ 2…. As a necessary
condition in order for the MaxWeight strategy to be stable, t he latter number must
be larger than the total tra�c intensity 2 a„ 2N ‚ 3…, which entails a < a MW „N… ƒ
„3N ‚ 2…=„5N ‚ 5…. Note that aMW „N…� a„N…, with strict inequality for all N � 2, and
that aMW „N…! 3=5 as N ! 1 .

We conclude that for a 2 „a MW „N…; a„N……, the MaxWeight strategy fails to achieve
stability, although there exists a strategy that does provi de stability. For large values
of N , the MaxWeight strategy is only able to sustain at most a frac tion 4/5 of the
maximum throughput. �

In the above example MaxWeight scheduling always selected n ewly arrived �ows
for transmission, even when it could have chosen a subset tha t allowed for better
spatial reuse. This persistent ine�ciency then leads to ins tability. As we see below,
this behavior occurs for more general tra�c patterns as well .

The locations of arriving �ows in Example 3.2 are uniformly d istributed, but highly
correlated. When the �ow locations are independent, the beh avior is more complex,
and (in)stability is more di�cult to establish. We therefor e proceed with a simulation
experiment where we assume that the locations of arriving �o ws are independent. As
we show in the next example, the MaxWeight strategy again fai ls to achieve throughput
optimality.

Example 3.3. Consider a ring network where the total number of arriving �o ws is
geometrically distributed with parameter p ƒ 0:45 and mean � ƒ „1 � p…=p� 11=9,
so � ƒ � E†B‡� 22=9. We assume that the locations of the �ows are independent an d
uniformly distributed along the ring. The reuse distance is d ƒ 0:3, and hence the
maximal number of �ows that can be scheduled simultaneously equals M ƒ 3.

We compare the performance of MaxWeight scheduling with tha t of a randomized
interval-based scheduling strategy. We divide the ring int o 42 intervals of length 1/42.
We consider 42 schedules ! k ƒ f k; k ‚ 14; k ‚ 28g (modulo 42), and choose in each
time slot one of these schedules uniformly at random.

We simulate the network 1000 slots, for both MaxWeight sched uling and the ran-
domized strategy. Figure 3.3 shows the total number of �ows p resent over time for
MaxWeight scheduling (gray) and the randomized strategy (b lack). Under MaxWeight
scheduling the number of �ows grows without bound, suggesti ng instability. In con-
trast, the number of �ows settles around a relatively low lev el for the randomized
strategy. �

3.3 Stability of region-based scheduling

In the previous section we demonstrated the spatial ine�cie ncy of MaxWeight schedul-
ing. This raises the question of �nding scheduling algorith ms that can be used to sta-
bilize spatial networks with �ow-level dynamics. For the si ngle-channel case with
�ow-level dynamics a (impractical) stabilizing policy was presented in Chapter 2.
Moreover, it was recently shown that maximum stability can b e achieved by schedul-
ing according to the feasible transmission rate [54, 55] or a ccording to the product
of feasible transmission rate and the delay [74]. It is not cl ear whether these poli-
cies are throughput-optimal in the spatial setting, or how t hey may need be modi�ed
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Lemma 3.2. Let d > 0, K 2 N and set

h ƒ K
j K„d � 2

p
2=K…

d

k� 1
: (3.3)

Then ! 2 
 „K; d…) ! „K=h…2 
 „K=h; d….

Lemma 3.2 states that if ! is a feasible set of cells under K -partition and reuse
distance d � 2

p
2=K, then it is a feasible set of cells under „K=h…-partition and reuse

distance d as well. The proof of the lemma is presented in Appendix 3.A.2 .
We are now in a position to state and prove Theorem 3.1. An arri val density

function � is said to be smooth if it is

� uniformly lower bounded, i.e., there exists a � „0…> 0 such that �„x; y… � � „0…

for all „x; y…2 S ;

� di�erentiable, with a uniformly upper bounded �rst-order p artial derivative, i.e.,
there exists a � „1…< 1 such that @�„x;y…

@x � � „1…and @�„x;y…
@y � � „1…for all „x; y…2 S .

Theorem 3.1. Let � be a smooth arrival density function such that „1 ‚ �…� 2 C „d…for
some � > 0. Then there exists a K ƒ K„�… such that � 2 C „K; d….

The proof of Theorem 3.1 is presented in Appendix 3.A.3. The i dea behind the
proof of Theorem 3.1 is as follows. By Lemma 3.1 we know that fo r any given arrival
density function within the capacity region C„d…, the system can be stabilized by a
randomized region-based algorithm under K -partition and reduced reuse distance
d � 2

p
2=K that selects schedule ! 2 
 „K; d � 2

p
2=K…with a certain probability

� „!… . In order to turn this mechanism into a scheduler that is feas ible for reuse
distance d, we scale the entire system by a factor h � 1 , and by Lemma 3.2 we know
that our randomized scheduler is now valid for reuse distanc e d. This is illustrated
in Figure 3.5 for the 8-partition. Certain cells in the scale d system are located outside
the unit square, and scheduling them does not result in �ows b eing served. However,
by choosing K su�ciently large we can make this throughput loss arbitrari ly small,
thus stabilizing the system.

6-partition8-partition

Figure 3.5: Constructing a 6-partition from the original 8- partition.

While we have demonstrated in Theorem 3.1 that the capacity r egion C„K; d…of
the partitioned system approaches C„d…in a certain sense as K increases, it can be
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Appendix

3.A Remaining proofs

3.A.1 Proof of Lemma 3.1

Let � 2 C „d…, P ƒ f X1 ; X2 ; : : : ; X n g 2 
 „d…and K � 2
p

2=d. We show that, with k i ; l i
such that X i 2 R k i ;l i , i ƒ 1; : : : ; n ,

f „k 1 ; l1…; „k2 ; l2…; : : : ; „kn ; ln …g 2 
 „K; d � 2
p

2=K…: (3.4)

That is, the points in P belong to a feasible set of cells under K -partition with a reduced
reuse distance d � 2

p
2=K. Consequently, any set of �ows simultaneously scheduled

under this strategy are located in a feasible set of cells und er K -partition and reuse
distance d � 2

p
2=K. Therefore this strategy is a legitimate region-based sche duling

under K -partition with reuse distance d � 2
p

2=K, which means � 2 C „K; d � 2
p

2=K….
We now prove (3.4). Let i; j 2 f 1; 2; : : : ; n g, i ” j , and consider any two points

Yi 2 R k i ;l i and Yj 2 R k j ;l j . Then

kYi � Yj k ƒk Yi � X i ‚ X i � X j ‚ X j � Yj k

�k X i � X j k � k X i � Yi k � k X j � Yj k

� d � 2
p

2=K:

As a result no two points Yi 2 R k i ;l i and Yj 2 R k j ;l j are within distance d � 2
p

2=K,
i ” j , and thus the subset of cells f „k 1 ; l1…; „k2 ; l2…; : : : ; „kn ; ln …g belongs to 
 „K; d �
2

p
2=K….

3.A.2 Proof of Lemma 3.2

Let ! 2 
 „K; d � 2
p

2=K…, and for k; l ƒ 1; 2; : : : ; K=h denote,

~R k;l ƒ
n

„x; y…2 †0; 1‡2 : „x=h; y=h…2 R k;l

o
;

the cells of size „h=K…2 under „K=h…-partition. Consider two points „x 1 ; y1…2 ~R k1 ;l1

and „x 2 ; y2…2 ~R k2 ;l2 , with „k 1 ; l1…; „k2 ; l2…2 ! . It follows from the de�nition of

 „K; d � 2

p
K…that k„x 1=h; y 1=h…� „x 2=h; y 2=h…k � d � 2

p
2=K, which implies k„x 1 ; y1…�

„x 2 ; y2…k � h„d � 2
p

2=K…� d, completing the proof.

3.A.3 Proof of Theorem 3.1

Let � be a smooth arrival density function such that „1 ‚ �…� 2 C „d…for some � > 0.
Lemma 3.1 then implies that for any K > 2

p
2=d, „1 ‚ �…� 2 C „K; d � 2

p
2=K…, i.e.,

there exists � „!… > 0, ! 2 
 „K; d � 2
p

2=K…with
P

! 2 
 „K;d � 2
p

2=K…� „!… ƒ 1, such
that

„1 ‚ �…� k;l E†B‡� � k;l ƒ
X

! 2 
 „K;d � 2
p

2=K…

� „!…! kl (3.5)

for all k; l ƒ 1; 2; : : : ; K .
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Now consider a randomized scheduling strategy which serves the set of cells
in ! 2 
 „K; d � 2

p
2=K…with probability � „!… . Let h be as in (3.3), and denote

by ~R k;l the cells under K=h partition. By Lemma 3.2 we know that any set ! 2

 „K; d � 2

p
2=K…is valid under K=h partition and reuse distance d, and ~R k;l is served

a fraction of time � k;l .
Since the arrival density function � is smooth, �„hx; hy… should be close to �„x; y…

when h is close to 1. Speci�cally, it may be shown by the mean value th eorem that

�„hx; hy… � �„x; y… ‚ 2� „1…„h � 1…;

The arrival intensity ~� k;l of cell ~R k;l can be bounded as

~� k;l ƒ
Z

~R k;l

�„x; y… dxdy ƒ h2
Z

R k;l

�„hx; hy… dxdy:

� h2
Z

R k;l

�
�„x; y… ‚ 2� „1…„h � 1…

�
dxdy: (3.6)

Now choose K large enough (and hence h small enough) such that 2 � „1…„h � 1…�
�� „0…=2 and h2 � 1‚ �

1‚ �= 2 , then

h2
Z

R k;l

�
�„x; y… ‚ 2� „1…„h � 1…

�
dxdy

� „1 ‚ �…
Z

R k;l

�„x; y… dxdy ƒ „1 ‚ �…� k;l : (3.7)

Combining (3.5)-(3.7) yields ~� kl E†B‡� � k;l for all k; l ƒ 1; : : : ; K=h , i.e., � 2 C „K=h; d….





4
Stability and insensitivity

In this chapter we divert our attention to the CSMA model, int roduced in Section 1.3.2.
This model is popular for its ability to provide accurate num erical [49] and qualita-
tive [98] predictions, while retaining tractability; it wi ll be used in Chapters 5-7 for a
detailed study of the CSMA algorithm.

The CSMA model typically assumes that both the transmission durations and the
back-o� periods are exponentially distributed. In the �rst part of this chapter we
show that the stationary distribution of the joint activity process in the CSMA net-
work is insensitive with respect to the distribution of the b ack-o� periods and the
transmission durations. More precisely, the stationary di stribution only depends on
the mean back-o� time and mean transmission duration. In the second part of this
chapter we study the stability region of the unsaturated CSM A model discussed in
Section 1.3.3, where packets are generated over time and bu� ers may occasionally
empty. We consider a single-hop network in which packets imm ediately leave the
network after transmission, and investigate the stability region of such networks. We
will identify necessary and su�cient conditions for stabil ity in the case of a complete
con�ict graph, and illustrate the di�culties that arise for general con�ict graphs.

This chapter is organized as follows. In Section 4.1 we prese nt a detailed model
description and establish the insensitivity result for the stationary distribution of the
model under saturated conditions. We then turn to an unsatur ated scenario, and in
Section 4.2 we present a necessary stability condition for g eneral con�ict graphs. In
Section 4.3 the stability region is obtained for full con�ic t graphs, while Section 4.4
illustrates the di�culties that arise for partial con�ict g raphs. In Section 4.5 we make
some concluding remarks.
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joint activity state is 
 PH � 
 1 � � � � � 
 n . The stationary distribution � PH of this
Markov process has the following product-form solution:

Lemma 4.1. Let the back-o� times and transmission durations have a phas e-type dis-
tribution. Then, regardless of back-o� freezing,

� PH„!… ƒ Z � 1
Y

i :! i �� 1

� � ! i

Y

i :! i � 1

� i � ! i ; ! 2 
 PH; (4.1)

where Z is the normalization constant.

The proof of Lemma 4.1 is presented in Appendix 4.A.2. In this proof we treat
the freezing and non-freezing systems in parallel, and we de monstrate that freezing
indeed has no impact on the stationary distribution.

Using Lemma 4.1 we can now show that the node activity is insen sitive to the
distributions of the back-o� times and transmission durati ons.

Theorem 4.1. Let the back-o� times and transmission durations have a phas e-type
distribution. Then, regardless of back-o� freezing,

� „x… ƒ Z � 1
nY

i ƒ 1

� x i
i ; x 2 
 ; (4.2)

where Z is the normalization constant.

Proof. Denote by 
 PH„x…the set of all states ! 2 
 PH that correspond to x 2 
 , i.e.,


 PH„x…ƒ f ! 2 
 PH j 8 i : ! i � � 1 if x i ƒ 0; ! i � 1 if x i ƒ 1g:

Then

�„x… ƒ
X

! 2 
 PH„x…

� PH„!… ƒ Z � 1
X

! 2 
 PH„x…

Y

i :! i �� 1

� ! i

Y

i :! i � 1

� i � ! i ƒ Z � 1
nY

i ƒ 1

� x i
i ;

as
P

k � k ƒ 1 and
P

k � k ƒ 1.

In Theorem 4.1 we have shown that the limiting distribution o f the activity pro-
cess under generally distributed back-o� times and transmi ssion durations (4.2) is
the same as the distribution for exponential distributions (1.8). This result was �rst
shown in [97], and for generally distributed back-o� period s and back-o� freezing,
partial proof arguments are presented in [49]. In the case wi thout back-o� freezing,
the insensitivity result may be directly proven by represen ting the dynamics as those
observed in an Engset network as considered in [8], Section 5 .3. This model is essen-
tially a variation of a Loss network (see Section 1.3.4) with a �xed and �nite number
of customers that are alternatively active and idle. So the n umber of idle customers
decreases when more customers are in service, as does the rat e of idle customers
trying to become active. The Engset network is constructed f rom the con�ict graph
„V ; E…: The links in the Engset network are of unit capacity and corr espond to the
undirected edges in the graph. Each node i 2 V is then represented as a customer
in the Engset network which, when active, simultaneously us es links f i; j g for all j
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Let A j „s; t…be the number of packet arrivals at node j during the time interval †s; t‡
and B�

j „s; t…the number of packet transmissions at node j during the time interval
†s; t‡, so that

Q j „t…ƒ Q j „s…‚ A j „s; t…� B�
j „s; t…: (4.3)

Moreover, denote by Bj „U i;n ; t…the number of packet transmissions at node j during
the time interval †Ui;n ; t‡ in a modi�ed version of the network where the various nodes
are in the exact same state at time Ui;n and are all assumed to be saturated from that
time onward. De�ne

Vi;j ;n ƒ sup f t : Q j „s…� 1 8 s 2 †Ui;n ; t‡g;

Wi;j ;n ƒ sup f t : A j „U i;n ; s…� Bj „U i;n ; s…� 0 8 s 2 †Ui;n ; t‡g;

and denote Vi;n ƒ min j ƒ 1;:::;n Vi;j ;n and Wi;n ƒ min j ƒ 1;:::;n Wi;j ;n .
By de�nition, Q j „t…� 1 for all t 2 †Ui;n ; Vi;n ‡, j ƒ 1; : : : ; n . Thus for all nodes j we

have B�
j „U i;n ; t…ƒ Bj „U i;n ; t…for all t 2 †Ui;n ; Vi;n ‡. From (4.3) with s ƒ Ui;n we see

Q j „t…� 1 ‚ A j „U i;n ; t…� B�
j „U i;n ; t…ƒ 1 ‚ A j „U i;n ; t…� Bj „U i;n ; t…; t2 †Ui;n ; Vi;n ‡;

so Vi;n � Wi;n . Since 1
t E†Aj „U i;n ; Ui;n ‚ t…‡ƒ � j > � j ƒ lim t !1

1
t E†Bj „U i;n ; Ui;n ‚ t…‡, it

follows that there exists b2 > 0 such that P„V i;n ƒ 1 …� P„W i;n ƒ 1 … > b2 for all n .
In conclusion, the probability that the queue of node i never empties again after

it has emptied for the n-th time, is bounded from below by b ƒ b1b2 > 0. Thus, the
total expected number of times that the queue of node i empties is bounded from
above by

P 1
nƒ 0„1 � b…n ƒ 1=b, which means that it only empties �nitely often with

probability 1.

Proposition 4.1 establishes a connection between the throu ghput in the saturated
model and stability in the unsaturated model. Recall that th e saturation throughput
follows directly from � i ƒ � i

P
x2 
 :x i ƒ 1 � „x… , with � „ � …the limiting distribution in

Theorem 4.1.
It might seem natural that a dual property to Proposition 4.1 holds as well, i.e.,

all the nodes are stable if � i < � i for all i ƒ 1; : : : ; n . It is indeed the case that then
at least one of the nodes must be stable, as otherwise the netw ork behaves as in the
saturated regime, and each node i would have a throughput � �

i ƒ � i . This contradicts
the fact that � �

i � � i < � i for all nodes. However, it is not the case in general that
all the nodes are stable if � i < � i for all i ƒ 1; : : : ; n . In order to see that, we next
consider an illustrative example.

4.2.1 Example: ring topology

Consider a 4-node ring topology, i.e., n ƒ 4 and E ƒ ff 1; 2g; f 2; 3g; f 3; 4g; f 4; 1gg.
Suppose that � i � � and � i � 1, so that � i � � ƒ �„ 1 ‚ �…=„1 ‚ 4� ‚ 2� 2…. Also, let
� 1 ƒ � 2 ƒ � 3 � � < � , and � 4 ƒ 0. Assume that the arrival processes are Poisson and
that the back-o� periods and transmission durations are exp onentially distributed.

First observe that both nodes 1 and 3 must be stable. In case ei ther of these nodes
were unstable, the fraction of time it would be active is boun ded from below by

„1 � � �
2 …

�
1 ‚ �

� „1 � �…
�

1 ‚ �
�

�
1 �

�„ 1 ‚ �…
1 ‚ 4� ‚ 2� 2

� �
1 ‚ �

>
�„ 1 ‚ �…

1 ‚ 4� ‚ 2� 2
ƒ � > �;
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imax ƒ max f i 2 f 1; : : : ; n g : � i < �̂ i g, with the convention that imax ƒ 0 when � i > �̂ i

for all i ƒ 1; : : : ; n , and assume � imax ‚ 1 > �̂ imax ‚ 1 in case imax < n . The interpretation of
�̂ i suggests that node imax is the stable node with the highest index, as will be shown
in the following theorem.

Theorem 4.2. Nodes 1; : : : ; i max are stable, while nodes imax ‚ 1; : : : ; n are unstable.

Proof. For compactness, denote by � �
0 the fraction of time that all nodes are inactive.

As noted in Section 4.2, we have that � �
i � � i , with equality when node i is stable, and

thus � �
i � � i , with equality when node i is stable. In view of the back-o� freezing,

the back-o� process of node i is only running when all nodes are inactive, and hence
we have � �

i ƒ 
 i =� i , with 
 i the expected number of back-o�s of node i per unit of
time. (Without back-o� freezing, this relationship still h olds for exponential back-o�
time distributions, but for general back-o� time distribut ions there does not seem to
be a simple connection between 
 i and � �

0 in that case.) By de�nition, the probability
that node i has a packet to transmit when a back-o� period ends, equals p i ƒ � �

i =
 i .
Combining these two relationships, we obtain the identity � �

i ƒ p i � i � �
0 and thus

� �
i ƒ p i � i � �

0 . In particular, � �
i ƒ � i � �

0 when node i is unstable. Hence � i � � i � �
0 ,

i.e., � i � � i � �
0 , when node i is stable, while � i � � i � �

0 , i.e., � i � � i � �
0 when node i is

unstable. It follows that the set of stable nodes is of the for m f 1; : : : ; i � g for some
i � 2 f 0; : : : ; n g. It remains to be shown that i � ƒ imax .

First observe that
P n

i ƒ 0 � �
i ƒ 1, � �

i ƒ � i for all i ƒ 1; : : : ; i � , and � �
i ƒ � i � �

0 for all
i ƒ i � ‚ 1; : : : ; n . This yields

� �
0 ƒ

1
1 ‚

P n
j ƒ i � ‚ 1 � j

�
1 �

i �X

i ƒ 1

� i

�
:

Further observe the equivalence relation

� i >
� i

1 ‚
P n

j ƒ i � j

�
1 �

i � 1X

j ƒ 1

� j

�
() � i ‚ � i

nX

j ƒ i

� j > � i � � i

i � 1X

j ƒ 1

� j

() � i ‚ � i

nX

j ƒ i ‚ 1

� j > � i � � i

iX

j ƒ 1

� j () � i >
� i

1 ‚
P n

j ƒ i ‚ 1 � j

�
1 �

iX

j ƒ 1

� j

�
:

Since the nodes are indexed such that � i =� i ƒ � i =� i � � i ‚ 1=� i ‚ 1 ƒ � i ‚ 1=� i ‚ 1 , we
obtain the property

� i > �̂ �
i =) � i ‚ 1 > �̂ i ‚ 1 : (4.4)

Now suppose that 0 � i � < i max . The fact that node i � ‚ 1 � n is unstable means
that

� i � ‚ 1 > � �
i � ‚ 1 ƒ � i � ‚ 1 � �

0 ƒ
� i � ‚ 1

1 ‚
P n

j ƒ i � ‚ 1 � j

�
1 �

i �X

i ƒ 1

� i

�
ƒ �̂ i � ‚ 1 :

Property (4.4) then implies that � i > �̂ i for all i ƒ i � ‚ 1; : : : ; n , which contradicts
imax � i � ‚ 1, and hence we must have i � � imax .

The fact that node i � is stable means that

� i � ƒ � �
i � � � i � � �

0 ƒ
� i �

1 ‚
P n

j ƒ i � ‚ 1 � j

�
1 �

i �X

i ƒ 1

� i

�
:
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Property (4.4) then implies that

� i � �
� i �

1 ‚
P n

j ƒ i � � j

�
1 �

i � � 1X

i ƒ 1

� i

�
ƒ �̂ i � ;

and hence we must have imax � i � .

The result in Theorem 4.2 in fact holds for any stationary tra �c process as long
as the service is in�nitely divisible, with the � i values representing the mean amount
of tra�c generated per time unit as measured in units of trans mission time. The
form of the stability conditions is rather reminiscent of th ose for polling systems
with k i -limited or Weighted Fair Queueing (WFQ) service disciplin es [25] and General-
ized Processor Sharing (GPS) queues [13, 46].

Noting that imax ƒ n if and only if � i < �̂ i for all i ƒ 1; : : : ; n , Theorem 4.2 in
particular gives the following necessary and su�cient cond ition for all nodes to be
stable.

Corollary 4.1. All nodes are stable if and only if � i < �̂ i for all i ƒ 1; : : : ; n .

The explicit and relatively simple form of the stability con dition established in
Corollary 4.1 is highly remarkable as it starkly contrasts w ith those for slotted Aloha
systems, which even for a complete con�ict graph with three o r more nodes have
remained largely elusive, see for instance [3, 85, 86] for bo unds and partial results.

The next result shows that for full con�ict graphs, the dual p roperty of Proposition
4.1 does hold (which in general is not the case; see Section 4. 2.1).

Corollary 4.2. All nodes are stable if � i < � i for all i ƒ 1; : : : ; n .

Proof. For full con�ict graphs we have that � i ƒ � i =„1 ‚
P n

i ƒ 1 � i …. Note that � i < � i

for all i ƒ 1; : : : ; n implies � n < � n and � n ƒ „1 � � 1 � � � � � � n � 1… � n
1‚ � n

< „ 1 � � 1 �

� � � � � n � 1… � n
1‚ � n

ƒ �̂ n . This yields imax ƒ n, which completes the proof.

We conclude this section by two further consequences of Theo rem 4.2 that are
helpful when only the total load

P n
i ƒ 1 � i is known. Denote � min ƒ min i ƒ 1;:::;n � i and

� max ƒ max i ƒ 1;:::;n � i .

Corollary 4.3. All nodes are stable if
P n

i ƒ 1 � i < � min
1‚ � min

. This condition is sharp in the

sense that if � 1 ƒ � � � ƒ � n � 1 ƒ 0 and � n ƒ � min , then � n < � min
1‚ � min

is necessary for
node n to be stable.

Corollary 4.4. At least one node is unstable if
P n

i ƒ 1 � i > � max
1=n‚ � max

. This condition is

sharp in the sense that if � 1 ƒ � � � ƒ � n ƒ � and � 1 ƒ � � � ƒ � n ƒ � , then � < �
1‚ n� is

su�cient for all nodes to be stable.
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4.4 Stability for partial con�ict graphs

In Section 4.3 we focused on the case of a full con�ict graph, a nd derived explicit
necessary and su�cient conditions for stability. In this se ction we allow for partial
con�ict graphs, and will show that in general the stability c onditions cannot be rep-
resented in such an explicit form. In particular, we illustr ate the di�culties that arise
in star topologies, and then argue that all (non-complete) g raphs contain such a star
topology as an induced subgraph.

4.4.1 Star topologies

Consider a star topology, where the leaf nodes 1 ; : : : ; n � 1 all interfere with the root
node n, but not with each other, i.e., E ƒ f 1; : : : ; n � 1g � f ng. The stability region may
then be characterized by:

� i < „ 1 � � n …
� i

1 ‚ � i
; i ƒ 1; : : : ; n � 1; (4.5)

and

� n < �̂ n ; (4.6)

with �̂ n representing the fraction of time that node n would be active if it were satu-
rated.

By de�nition, inequality (4.6) is necessary and su�cient fo r the root node n to
be stable, and given that node n is stable, the inequalities (4.5) are necessary and
su�cient for all the leaf nodes 1 ; : : : ; n � 1 to be stable as well. The boundary of the
stability region consists of a total of n segments, with n � 1 linear segments de�ned
by the inequalities (4.5), where the corresponding leaf nod e is critically loaded, and
1 segment which is not likely to be linear in general, describ ed by the inequality (4.6),
where the root node is critically loaded.

There does not seem to be a closed-form expression available for �̂ n in general, in
fact not even for n ƒ 3, so that the inequality (4.6) is not so explicit. The next le mma
however provides a useful closed-form lower bound for �̂ n .

Corollary 4.5. Assuming exponential back-o� times and transmission durat ions, we
have �̂ n � � n , with

� n ƒ
� n

� n ‚
Q n � 1

i ƒ 1 „1 ‚ � i …
:

Proof. Noting that the star topology is a bipartite graph, the state ment of the corol-
lary follows directly from Proposition 4.2 (presented in Ap pendix 4.A), with V1 ƒ f ng
and V2 ƒ f 1; : : : ; n � 1g.

Corollary 4.5 implies that as long as � n < � n , the root node n is guaranteed to be
stable, and thus the conditions (4.5) are necessary and su�c ient for all the leaf nodes
1; : : : ; n � 1 to be stable as well. Noting that � i ƒ „1 � � n … � i

1‚ � i
, the inequalities (4.5)

may be expressed as
� i

� i
<

1 � � n

1 � � n
; i ƒ 1; : : : ; n � 1;
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Appendix

4.A Auxiliary results and remaining proofs

4.A.1 A stochastic comparison result

Consider a bipartite graph such that V ƒ V1 [ V2 , with V1 \ V2 ƒ ; and E � V1 � V2 .
We will show that in the situation where all the nodes are satu rated, the throughputs
of the nodes in V1 and V2 are lower and higher respectively, than in case only the
nodes in V1 are saturated. Let V1 � f 1; : : : ; n g and de�ne � �

i „V 1…as the throughput of
node i in the situation where the nodes in V1 are saturated.

Proposition 4.2. Assuming exponential back-o� times and transmission durat ions,
we have � �

i „V 1…� � i for all i 2 V1 and � �
i „V 1…� � i for all i 2 V2 .

Proof. The proof relies on stochastic coupling [64]. Let N �
i „t…, i 2 V2 , N �

i „t…, i ƒ
1; : : : ; n , and N �

i „t…, i ƒ 1; : : : ; n , be independent Poisson processes of rates � i , � i ,
and � i , respectively. We will use these Poisson processes to const ruct processes
X � „t…ƒ „X �

1 „t…; : : : ; X�
n „t……and Y „t…ƒ „Y i „t……i 2 V2 , representing the activity process

and the queue length process in the scenario where the nodes i 2 V1 are saturated,
and X„t…ƒ „X 1„t…; : : : ; Xn „t……representing the activity process in case all the nodes
are saturated. It is easily veri�ed that viewed in isolation , the processes X � „t…and
Y „t…as constructed above obey the same statistical laws as the ac tivity process and
the queue length process in the scenario where the nodes i 2 V1 are saturated, while
the process X„t… is governed by the same statistical laws as the activity proc ess in
case all the nodes are saturated.

We assume that X �
i „0…� X i „0…for all i 2 V1 and X �

i „0…� X i „0…for all i 2 V2 , and
allow Yi „0…, i 2 V2 , to be arbitrary. We will prove that X �

i „t…� X i „t…for all i 2 V1 and
X �

i „t…� X i „t…for all i 2 V2 . Since the stationary distribution of the processes X � „t…
and X„t…does not depend on the initial state, and � �

i „V 1…ƒ � i E†X �
i ‡ ƒ � i P„X �

i ƒ 1…
and � i ƒ � i E†Xi ‡ ƒ � i P„X i ƒ 1…, the statement of the proposition then follows.

We prove the above inequalities by induction. Let t be a time epoch at which an
event occurs in one of the Poisson processes. We will show tha t if the inequalities
hold at time t � , that they then continue to hold at time t ‚ . We distinguish three
cases, depending on in which of the various Poisson processe s the event occurs.

We �rst consider an event in the process N �
i „t…, re�ecting a packet arrival at one

of the unsaturated nodes i 2 V2 . In that case, we set Yi „t ‚ …ƒ Yi „t � …‚ 1. Note that the
values of X �

i „t…and X i „t…are not a�ected, and hence the inequalities trivially conti nue
to be valid. Second, we consider an event in the process N �

i „t…, corresponding to a
potential transmission completion at node i . In that case, we set X �

i „t ‚ …ƒ X i „t ‚ …ƒ 0,
and in case i 2 V2 ,

Yi „t ‚ …ƒ Yi „t � …� X �
i „t � …; (4.7)

re�ecting a potential packet departure. Since X �
i „t ‚ …ƒ X i „t ‚ …ƒ 0, the inequalities re-

main trivially satis�ed. Third, we consider an event in the p rocess N �
i „t…, correspond-

ing to a potential activation at node i . In that case we set X i „t ‚ …ƒ 1 if X j „t � …ƒ 0
for all j 2 Ci , with Ci representing the set of neighbors of node i . Moreover, in case
i 2 V1 , we set X �

i „t ‚ …ƒ 1 if X �
j „t � …ƒ 0 for all j 2 Ci , while in case i 2 V2 , we set

X �
i „t ‚ …ƒ 1 if Yi „t � …� 1 and X �

j „t � …ƒ 0 for all j 2 Ci .
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The fact that for i 2 V1 , Ci � V2 , and X �
j „t � …� X j „t � …for all j 2 V2 implies

that X i „t ‚ …ƒ 1 forces X �
i „t ‚ …ƒ 1. Likewise, the fact that for i 2 V2 , Ci � V1 , and

X �
j „t � …� X j „t � …for all j 2 V1 implies that X �

i „t ‚ …ƒ 1 forces X i „t ‚ …ƒ 1. Hence,
the inequalities continue to hold. Also, note that X �

i „t…ƒ 0 whenever Yi „t…ƒ 0, or
equivalently, X �

i „t…ƒ 1 can only occur when Yi „t…� 1, so that (4.7) leaves Yi „t…� 0
for all t � 0.

4.A.2 Proof of Lemma 4.1

We have that

� u

�
qu;m i ‚ 1

�
1 �

� u

1 � � m i ‚ 1

�
‚

m iX

l ƒ 1
l ” u

qu;l

�
ƒ

m iX

l ƒ 1
l ” u

� l

�
ql;u ‚ ql;m i ‚ 1

� u

1 � � m i ‚ 1

�
; (4.8)

with
P m i

uƒ 1 � u ƒ 1, and

� u

�
r u;n i ‚ 1

�
1 �


 u

1 � 
 n i ‚ 1

�
‚

n iX

l ƒ 1
l ” u

r u;l

�
ƒ

n iX

l ƒ 1
l ” u

� l

�
r l;u ‚ r l;n i ‚ 1


 u

1 � 
 n i ‚ 1

�
; (4.9)

with
P n i

uƒ 1 � u ƒ 1. It is readily seen that

� i ƒ „1 � � m i ‚ 1 …� 1
m iX

uƒ 1

� uqu;m i ‚ 1 ; (4.10)

� i ƒ „1 � 
 n i ‚ 1 …� 1
n iX

uƒ 1

� u r u;n i ‚ 1 : (4.11)

In order to show that the � PH in (4.1) is indeed the limiting distribution of the Markov
process of interest, it su�ces to show that � PH satis�es the global balance equations
of this process. However, rather than doing this directly, w e study for each node i
the partial balance equations that equate the rate into and o ut of a state by changes
to this node only. As the global balance equations can be obta ined by summing these
partial balance equations over all nodes, it is su�cient to s how that � PH satis�es all
partial balance equations.

Let Ci denote the set of neighbors of node i , and de�ne C ‚
i ƒ Ci [ f i g. Let T i

k „!…
denote the operator that changes the i -th component of ! to k, while leaving the
other components intact. When node i is inactive and unblocked we see the following
transitions to node i (irrespective of freezing) 8 ! s:t : ! j � � 1 8 j 2 C ‚

i

� PH„!…
�

q! i ;m i ‚ 1

�
1 �

� ! i 
 n i ‚ 1

1 � � m i ‚ 1 
 n i ‚ 1

�
‚

m iX

kƒ 1
k” ! i

q! i ;k

�

ƒ
n iX

kƒ 1

� PH„T i
k „!……rk;n i ‚ 1

� ! i

1 � � m i ‚ 1 
 n i ‚ 1

‚
m iX

kƒ 1
k” ! i

� PH„T i
� k „!……

�
qk;! i ‚ qk;m i ‚ 1

� ! i 
 n i ‚ 1

1 � � m i ‚ 1 
 n i ‚ 1

�
: (4.12)
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If node i is active then we have (irrespective of freezing) 8 ! s:t : ! i � 1

� PH„!…
�

r ! i ;n i ‚ 1

�
1 �

� m i ‚ 1 
 ! i

1 � � m i ‚ 1 
 n i ‚ 1

�
‚

n iX

kƒ 1
k” ! i

r ! i ;k

�

ƒ
m iX

kƒ 1

� PH„T i
� k „!……qk;m i ‚ 1


 ! i

1 � � m i ‚ 1 
 n i ‚ 1

‚
n iX

kƒ 1
k” ! i

� PH„T i
k „!……

�
r k;! i ‚ r k;n i ‚ 1

� m i ‚ 1 
 ! i

1 � � m i ‚ 1 
 n i ‚ 1

�
: (4.13)

The �nal balance equation concerns all states where node i is inactive, but at least one
of its neighbors is active, so node i is blocked. The case of back-o� freezing yields a
trivial partial balance equation, as in this case no such sta te can be entered or exited
due to changes in the state of node i . On the other hand, when the back-o� process
of blocked nodes is not frozen, the state can change due to a tr ansition within the
back-o� process of node i :

� PH„!…
�

q! i ;m i ‚ 1

�
1 �

� ! i

1 � � m i ‚ 1

�
‚

m iX

kƒ 1
k” ! i

q! i ;k

�

ƒ
m iX

kƒ 1
k” ! i

� PH„T i
� k „!……

�
qk;! i ‚ qk;m i ‚ 1

� ! i

1 � � m i ‚ 1

�
; 8 ! s:t : ! i � � 1; 9 j 2 Ci : ! j � 1:

(4.14)

We now proceed to show that � PH from (4.1) indeed satis�es (4.12)-(4.14). Substi-
tuting � PH into (4.12), and canceling common terms yields

� ! i

�
q! i ;m i ‚ 1
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1 �

� ! i 
 n i ‚ 1

1 � � m i ‚ 1 
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ƒ
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‚ � i
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1 � � m i ‚ 1 
 n i ‚ 1
:

By (4.11), and adding � ! i q! i ;m i ‚ 1

�
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�
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5
Fairness in linear networks

As mentioned in Section 1.3.2, a major drawback of CSMA-like protocols is unfairness,
in the sense that some of the nodes get starved, while others r eceive high throughput.
In the present chapter we study this unfairness in a linear ne twork in which an active
node blocks its neighbors on both sides. By choosing the back -o� rate of each node as
a particular function of the number of its neighbors, we can g uarantee that all nodes in
the network have the same throughput, completely removing t he unfairness. We then
investigate the consequences of this choice of activation r ates on the network-average
saturated throughput, and we show that these rates perform w ell in non-saturated
settings.

Although we assume that back-o� times and transmission dura tions are expo-
nentially distributed, we know by Theorem 4.1 that all resul ts hold for generally dis-
tributed back-o� times and transmission durations as well. In Chapter 6 we provide
an alternative proof for the main result in this chapter, usi ng Markov random �elds.

This chapter is structured as follows. In Section 5.1 we intr oduce the linear net-
work in more detail. In Section 5.2 we study some of the key fea tures of the unfairness
that arises when all nodes have equal back-o� rates. In Secti on 5.3 we determine the
fair back-o� rates that yield equal throughputs. In Section 5.4 we investigate the im-
pact of the fair back-o� rates on the network-average throug hput and in Section 5.5
we discuss the performance of the fair back-o� rates in an uns aturated network. Sec-
tion 5.6 presents some conclusions.
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5.1 Model description

We model the unfairness using the CSMA model introduced in Ch apter 1. We consider
a linear network of n nodes on a line, where a transmitting node blocks the �rst
� nodes on both sides. So the con�ict graph is such that all vert ices j i � j j � � are
connected, and the set of feasible states 
 is given by all ! such that no two 1's in !
are � positions or less apart, i.e., ! i ! j ƒ 0 if 1 � j i � j j � � .

Alternatively, we can express the set of feasible states as a ll states that satisfy a
certain system of linear equations. Let A be an „n � �… � n matrix where each row
contains � ‚ 1 consecutive 1's, in the following way:

A ƒ

0

BBBBBBB
@

1 1 : : : 1 0 : : : 0 0
0 1 1 : : : 1 0 : : : 0

. . .
. . .

...
0 : : : 0 1 1 : : : 1 0
0 0 : : : 0 1 1 : : : 1

1

CCCCCCC
A

: (5.1)

Now we can write the state space as 
 ƒ f ! 2 f 0; 1gn j A ! � 1g, where 1 is the
all-1 vector (of size n � � ). This characterization has a natural interpretation as a s et of
capacity constraints, and nodes can activate only when enou gh capacity is available.
We allocate unit capacity to each node, and use the conventio n that whenever a node
is active it uses its own capacity, as well as the capacity of a ll its neighbors to the left.
The i th row of A thus represents the capacity required when node i is active. The
constraints that arise from the �rst � nodes on the line are redundant, and ignoring
these leads to the matrix A in (5.1).

We assume that all nodes are saturated and that unblocked nod es activate after
an exponentially distributed (back-o�) time with mean 1 =� i . Without loss of gener-
ality, we assume that transmissions last for an exponential ly distributed time with
unit mean. Under these assumptions, the n-dimensional process that describes the
node activity is a continuous-time Markov process. We have s een that the stationary
distribution of this process is given by (see (1.8))

� „ ! …ƒ

(
Z � 1

n

Q n
i ƒ 1 � ! i

i ; if ! 2 
 ,
0; otherwise,

(5.2)

where Zn is the normalization constant of an n-node linear network. Note that we
made the dependence of the normalization constant on the net work length explicit,
which we will use elsewhere in this chapter. From Chapter 4 we know that the dis-
tribution (5.2) also holds for generally distributed back- o� times and transmission
durations. Since all results in this chapter are based on (5. 2), they remain valid for
general distributions.

Our main concern is with the long-term behavior of nodes, cha racterized by their
throughputs. We study the throughput vector � ƒ „� 1 ; : : : ; � n …, where � i represents
the fraction of time node i is active. Recall that

� ƒ
X

! 2 


� „ ! …! : (5.3)

By exploiting the structure of the network, we can construct alternative expres-
sions for the throughput in (5.3). More speci�cally, we make use of the observation
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that if node i is active, nodes to the left of i behave independently from nodes to the
right of i . This leads to the following theorem.

Theorem 5.1. De�ne the sequence „Z i …1
i ƒ�1 such that Z i ƒ 1 for i � 0, and

Z i ƒ 1 ‚ � 1 ‚ � � � ‚ � i ; i ƒ 1; 2; : : : ; � ‚ 1; (5.4)

Z i ƒ Z i � 1 ‚ � i Z i � � � 1 ; i ƒ � ‚ 2; � ‚ 3; : : : : (5.5)

Let the vector of back-o� rates � ƒ „� 1 ; : : : ; � n …be such that � i ƒ � n ‚ 1� i , i ƒ 1; : : : ; n .
Then

� i ƒ � i
Z i � � � 1Zn � i � �

Zn
; i ƒ 1; : : : ; n: (5.6)

Proof. By conditioning on whether or not node i is active, we can decompose the
activity of the network into two parts, separated by this act ive node (see [11, Equa-
tion (15)]),

� i ƒ � i
Z1:i � � � 1Z i ‚ � ‚ 1:n

Z1:n
; (5.7)

where Z i :j is the normalization constant of a network consisting only o f nodes i; : : : ; j .
For simplicity we denote Z i ƒ Z1:i , and the symmetry of � implies

Z i :n ƒ Z1:n � i ‚ 1 : (5.8)

Substituting (5.8) into (5.7) yields the expression for � i in (5.6). By conditioning on
the activity of node i , we immediately get the recursion relation (5.5).

5.2 Unfairness

We now venture deeper into the problem of unfairness, and ass ume for now that all
nodes have equal back-o� rates � i ƒ � . As observed in Section 1.4 the throughput
distribution in this case is highly unfair, in the sense that some nodes have a larger
throughput than others. In this section we evaluate the thro ughput in order to study
the unfairness in more detail.

In order to compute the throughput in (5.6), we need to comput e the Z i from (5.4)
and (5.5). A detailed analysis of the Z i is performed in Chapter 7, where it is shown
that

Z i ƒ
�X

j ƒ 0

cj � i
j ; i ƒ 0; 1; : : : ; (5.9)

with

cj ƒ
� � ‚ 1

j

„� ‚ 1…�j � �
; (5.10)

and � 0 ; : : : ; � � the � ‚ 1 roots of

� � ‚ 1 � � � � � ƒ 0: (5.11)

Moreover, with � 0 representing the root with the largest modulus of (5.11), it follows
from (5.9) that

Z i ƒ c0 � i
0 „ 1 ‚ o„ 1…… ; i! 1 ; (5.12)
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Proof. We have from (5.6) that � 1 ƒ Zn � 2=Zn and � 2 ƒ Zn � 3=Zn . Using (5.12) we
obtain

� 1

� 2
� � 0 ; n ! 1 : (5.13)

For � ƒ 1 we can explicitly solve (5.11) to obtain � 1=� 2 � � 0 ƒ 1
2 „1 ‚

p
1 ‚ 4� ….

We note that for � ƒ 1, the Z i satisfy a three-term recursion reminiscent of that
satis�ed by the Chebyshev polynomials Un of the second kind. Accordingly, we have

Z i ƒ „ � � …
1
2 „i ‚ 1…Ui ‚ 1„

p
� 1=4� … ƒ

b i ‚ 1
2 cX

j ƒ 0

 
i ‚ 1 � j

j

!

� j :

The latter expression can be interpreted as the summation ov er all possible combina-
tions of nodes that can be active simultaneously.

Results similar to those presented in this section can be obt ained for � � 2. As an
example, Figures 5.2(a)-5.2(b) show the per-node throughp ut for n ƒ 9 and � ƒ 2; 3.
Both �gures exhibit similar oscillatory behavior as observ ed for � ƒ 1, although the
oscillation period increases with � .

� i

� ƒ 0:1

� ƒ 0:5

� ƒ 1

� ƒ 5

(a) � ƒ 2

� i

� ƒ 0:1

� ƒ 0:5

� ƒ 1

� ƒ 5

(b) � ƒ 3

Figure 5.2: The per-node throughput for n ƒ 9 and various values of � and � .

5.3 Achieving fairness

In this section we present a way to completely remove the unfa irness that was dis-
cussed in Section 5.2. In order to do so, we choose node-depen dent back-o� rates � i

such that all nodes have equal throughputs ( � 1 ƒ � 2 ƒ � � � ƒ � n ). From (5.2) and (5.3)
we see that in order to meet this objective we have to solve a sy stem of n nonlinear
equations. It seems that in general this system cannot be sol ved directly. We there-
fore choose a more indirect approach, and we �rst consider tw o special cases that can
be solved explicitly. The insight obtained from these exact solutions is then used to
guess the general solution to the system of nonlinear equati ons.

The �rst case is when � ƒ n � 2, so that all but the two outer nodes will block the
entire network.
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Proposition 5.3. For linear networks with three or more nodes, and � ƒ n � 2, setting
� 1 ƒ � n ƒ � , � i ƒ �„ 1 ‚ �… for all other nodes and � > 0, yields equal throughputs

� i ƒ
�

1 ‚ „� ‚ 1…�
; i ƒ 1; : : : ; n: (5.14)

Proof. From (5.6) we see that

� 1 ƒ Z � 1
n � 1 „1 ‚ � n …; (5.15)

� i ƒ Z � 1
n � i ; i ƒ 2; 3; : : : ; n � 1; (5.16)

� n ƒ Z � 1
n � n „1 ‚ � 1…: (5.17)

The inherent symmetry of the model allows us to set � 1 ƒ � n . Moreover, for the
throughput of the other nodes to be equal, we require � 2 ƒ � � � ƒ � n � 1 ƒ � 1 „1 ‚ � 1….
If we set � 1 ƒ � , and substitute this into (5.15)-(5.17), we get a throughpu t of

� i ƒ Z � 1
n �„ 1 ‚ �…: (5.18)

The normalization constant Zn can be determined by summing over all feasible states:

Zn ƒ 1 ‚
nX

i ƒ 1

� i ‚ � 1 � n ƒ 1 ‚ „n � 2…�„1 ‚ �… ‚ 2� ‚ � 2

ƒ „1 ‚ �…„1 ‚ „� ‚ 1…�…: (5.19)

Substituting (5.19) into (5.18) yields (5.14).

The case n ƒ 5, � ƒ 3 of Proposition 5.3 was considered in [17]. The second speci al
case corresponds to n ƒ 2„� ‚ 1…, so that a node blocks at least half of the network.

Proposition 5.4. For linear networks with n ƒ 2m nodes, m 2 N, and � ƒ m � 1,
setting � i ƒ �„ 1 ‚ �…i � 1 for � > 0 and i ƒ 1; : : : ; m yields equal throughputs

� i ƒ
�

1 ‚ „� ‚ 1…�
; i ƒ 1; : : : ; n: (5.20)

Proof. To achieve equal throughputs, we see from (5.2) and (5.3) tha t for the case at
hand we should solve the system of equations

� 1 ‚ � 1 „� m ‚ 1 ‚ � � � ‚ � n …ƒ � 2 ‚ � 2„� m ‚ 2 ‚ � � � ‚ � n …ƒ � � � ƒ � m ‚ � m � n : (5.21)

Indeed, the throughput of node i can be written as a sum over all states in which
node i is active. Using symmetry, (5.21) can be written as

� 1 ‚ � 1„� 1 ‚ � � � ‚ � m …ƒ � 2 ‚ � 2 „� 1 ‚ � � � ‚ � m � 1…ƒ � � � ƒ � m ‚ � m � 1 : (5.22)

Let � 1 ƒ � > 0. The solution of (5.22) is easily seen to be � i ƒ �„ 1 ‚ �…i � 1 ; i ƒ 1; : : : ; m ,
and hence

� i ƒ Z � 1
n �„ 1 ‚ �…m : (5.23)

Summing over all possible states yields

Zn ƒ 1 ‚
nX

i ƒ 1

� i ‚
mX

i ƒ 1

� i

nX

j ƒ i ‚ m

� j ƒ „1 ‚ „� ‚ 1…�…„1 ‚ �…m : (5.24)

Substituting (5.24) into (5.23) gives (5.20).
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It is clear that the complexity of the system of equations gov erned by (5.3) reduces
considerably for the choices of � discussed in Propositions 5.3 and 5.4. For general �
this system remains rather complicated. However, we can use Propositions 5.3 and 5.4
to make an educated guess for the general solution. First obs erve that the fair back-
o� rates in Propositions 5.3 and 5.4 only depend on the number of neighbors (nodes
within � hops). Denote by 
„i… the number of neighbors of node i , let � > 0 be some
positive constant, and choose back-o� rates � �

i as

� �
i ƒ �„ 1 ‚ �…
„i…� 
„ 1…: (5.25)

We see that this choice is consistent with the fair back-o� ra tes in Propositions 5.3
and 5.4. We now show that � �

i indeed achieves fairness for all � .

Theorem 5.2. Let � > 0, � � n � 1 and choose � �
i as in (5.25). Then

� i ƒ
�

1 ‚ „1 ‚ �…�
; i ƒ 1; : : : ; n: (5.26)

We �rst show that when the back-o� rates are chosen according to (5.25), the
recursive relations (5.4) and (5.5) for the normalization c onstant Z i have a closed-
form solution.

Lemma 5.1. Let � > 0 and choose � �
i as in (5.25) . Then

Z i ƒ „1 ‚ �…i ; i ƒ 1; 2; : : : ; n � �: (5.27)

Proof. Substituting (5.27) into (5.4) gives,

Z i ƒ 1 ‚ � ‚ �„ 1 ‚ �… ‚ � � � ‚ �„ 1 ‚ �…i � 1 ƒ „1 ‚ �…i ;

for i � � ‚ 1. Substituting (5.27) into (5.5) gives,

Z i ƒ „1 ‚ �…i � 1 ‚ �„ 1 ‚ �…� „1 ‚ �…i � � � 1 ƒ „1 ‚ �…i ;

for i � � ‚ 2.

With Lemma 5.1 we are now in position to prove our main result.

Proof of Theorem 5.2. Recall from (5.6) that

� i ƒ � i
Z i � � � 1Zn � i � �

Zn
; i ƒ 1; : : : ; n: (5.28)

To prove Theorem 5.2 we substitute (5.27) into (5.28). We dis tinguish between di�er-
ent values of i .

For i � � ‚ 1 and i � n � � we see that � �
i ƒ �„ 1 ‚ �…� and

Z i � � � 1 ƒ „1 ‚ �…i � � � 1 ; Zn � i � � ƒ „1 ‚ �…n � i � � : (5.29)

Similarly, for i � � ‚ 1 and i � n � � ‚ 1 we have � �
i ƒ �„ 1 ‚ �…n � i and

Z i � � � 1 ƒ „1 ‚ �…i � � � 1 ; Zn � i � � ƒ 1: (5.30)
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For i � � and i � n � � we have � �
i ƒ �„ 1 ‚ �…i � 1 and

Z i � � � 1 ƒ 1; Zn � i � � ƒ „1 ‚ �…n � i � � : (5.31)

Finally, for i � � and i � n � � ‚ 1 we have � �
i ƒ �„ 1 ‚ �…n � � � 1 and

Z i � � � 1 ƒ 1; Zn � i � � ƒ 1: (5.32)

Substituting (5.29)-(5.32) into (5.28) yields

� i ƒ Z � 1
n �„ 1 ‚ �…n � � � 1 : (5.33)

We next consider the normalization constant. With m such that n ƒ � ‚ m , by (5.5),

Zn ƒ Zn � 1 ‚ � �
n Zn � � � 1 ;

which gives upon iteration

Zn ƒ Zn � � ‚
�X

i ƒ 1

� �
n ‚ 1� i Zn � � � i : (5.34)

Substituting (5.27) into (5.34) yields

Zn ƒ „1 ‚ �…n � � ‚
min f m;� gX

i ƒ 1

�„ 1 ‚ �…i � 1„1 ‚ �…n � � � i ‚
�X

i ƒ m ‚ 1

�„ 1 ‚ �…n � � � i

ƒ „1 ‚ �…n � � � 1 „1 ‚ „� ‚ 1…�…: (5.35)

Combining (5.35) and (5.33) leads to (5.26).

In Chapter 6 we provide an alternative proof of Theorem 5.2, u sing Markov random
�elds.

To understand better why the rates (5.25) only depend on the n umber of neighbors
of each node, we study the rates in the limiting regimes of lig ht tra�c ( � # 0) and heavy
tra�c „� ! 1 …. First write (5.25) as

� �
i ƒ �


„i…� 
„ 1…X

j ƒ 0

 

„i… � 
„ 1…

j

!

� j ; i ƒ 1; : : : ; n: (5.36)

When � is small, nodes activate slowly, and few nodes will be active simultane-
ously. In fact, the Markov process spends most of its time in s tates with at most
one active node, and node interaction (blocking) is negligi ble. This is re�ected in the
light-tra�c back-o� rates that follow immediately from (5. 36):

� �
i ƒ � ‚ „
„i… � 
„ 1……�2 ‚ O„� 3…; � # 0:

Hence, for small � , � �
i � � , which is the same for all nodes. Indeed, if at most

one node is active (as is the case for � small), there is no blocking, and therefore no
need to discriminate between nodes. As � increases, states with two active nodes
are increasingly likely, and nodes may now block their neigh bors (all nodes within
distance � ). This is accounted for in the back-o� rate by the term „
„i… � 
„ 1……�2 ,
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which is linear in the number of neighbors. Thus in light tra� c, only the number
of neighbors is of importance, rather than the structure of t he entire network. This
reasoning extends to more general networks.

Next, we consider large back-o� rates, and we compare the equ al rates (all nodes
activate with rate � ! 1 ) with the fair rates (5.25) (with � ! 1 ). In both cases,
nodes activate almost instantaneously when they get the cha nce to do so, i.e., when
all neighbors are inactive. Consequently, the only states t hat have positive probability
in the limit are those consisting of maximal independent set s of active nodes. The
distribution according to which these maximal states occur depends on the choice of
back-o� rates.

First consider the case of equal back-o� rates � i ƒ � , i ƒ 1; : : : ; n . We have seen
in Section 5.2 that this creates unfairness, and that the unf airness increases with � .
In particular, we see from (5.2) that the only states that hav e positive probability for
� ! 1 are those of maximum size, i.e., states with dn=„� ‚ 1…e active nodes. Thus,
for � ! 1 ,

� „ ! …ƒ

(
1=jMj ; if ! 2 M ;
0; otherwise ;

with M � 
 the set of states of maximum size and jMj the cardinality of this set.
The throughput of each node is thus determined by the number o f maximum states
it is contained in, which is not necessarily the same for all n odes.

For the fair back-o� rates (5.36), we see that

� �
i ƒ � 
„i…� 
„ 1…‚ 1 ‚ O„� 
„i…� 
„ 1……; � ! 1 : (5.37)

Thus the back-o� rate of a node is characterized by the leadin g exponent 
„i… � 
„ 1…‚
1, and the limiting probability of a state is determined by th e sum of these exponents
over all active nodes. In fact, the only states that give a con tribution for � ! 1 are
those that maximize the sum of the exponents of � over all active nodes. It turns out
that there are � ‚ 1 such states, with active nodes f i; i ‚ „� ‚ 1…; : : : ; i‚ „� ‚ 1…�i g,
i ƒ 1; : : : ; � ‚ 1, with � i ƒ d n ‚ 1� i

� ‚ 1 e � 1. Each such state has limiting probability

� „ ! …ƒ Z � 1
n

� iY

j ƒ 0

� i ‚ „� ‚ 1…j ƒ Z � 1
n „� n � � ‚ O„� n � � � 1……ƒ

1
� ‚ 1

; � ! 1 ;

because Zn ƒ „� ‚ 1…�n � � ‚ O„� n � � � 1…, as � ! 1 . Contrary to the case of equal rates,
we see that each node appears in exactly one state with positi ve limiting probability.
This explains the equal throughputs in heavy tra�c.

This result strongly depends on the structure of the network , as the maximal inde-
pendent sets may change drastically with the addition or the removal of even a single
node. As a result, the simple, locally determined heavy-tra �c back-o� rates (5.37)
may only hold for linear networks.

5.4 Network-average throughput

The fair rates � �
i in (5.25) are designed to remove the unfairness that arises w hen all

nodes have equal back-o� rates � . In order to compare the two schemes, we want to
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set their respective parameters � and � such that the average per-node throughputs
are equal. In a network with � i ƒ � > 0, i ƒ 1; : : : ; n , write Z i „� … and � i „� … for
the normalization constant of a network with i nodes, and the throughput of node i ,
respectively. Let �� n „� … ƒ n � 1

P n
i ƒ 1 � i „� … denote the average per-node throughput in

a network with n nodes.
In Section 5.3 we showed that all nodes have equal throughput s �=„ 1 ‚ �„� ‚ 1……

when using the fair back-o� rates in (5.25). When all nodes ha ve equal back-o� rates,
a closed-form expression for the throughput does not seem av ailable. However, we
can express the average per-node throughput in terms of the n ormalization constant
Zn .

Proposition 5.5. Let � i ƒ � , i ƒ 1; : : : ; n . The average per-node throughput is given
by

�� n „� … ƒ
�

nZ n „� …
dZn „� …

d�
: (5.38)

Proof. We have from (5.6) with � i ƒ � that

�� n „� … ƒ
�

nZ n

nX

i ƒ 1

Z i � � � 1Zn � i � � :

We compute, using the de�nition of Z i in Theorem 5.1,

1X

nƒ 1

� nX

i ƒ 1

Z i � � � 1Zn � i � �

�
xn ƒ x

� x � � 1
x � 1

‚ x � GZ „x…
� 2

;

with GZ „x…the generating function of the Z i given by

GZ „x…ƒ
1X

i ƒ 0

Z i x i ƒ
x � 1 ‚ � x � ‚ 1 � � x

„x � 1…„1 � x � � x � ‚ 1…
;

see (7.2). Some rewriting then gives

1X

nƒ 1

� nX

i ƒ 1

Z i � � � 1Zn � i � �
�
xn ƒ

x
„1 � x � � x � ‚ 1…2

:

On the other hand, we compute that

d
d�

�
GZ „x…

�
ƒ

x
„1 � x � � x � ‚ 1…2

and the result follows.

By Proposition 5.5 and the expression (5.9) for Z i , we can express the average
per-node throughput in terms of the roots � 0 ; : : : ; � � of (5.11).

Proposition 5.6. Let � i ƒ � , i ƒ 1; : : : ; n . The average per-node throughput is given
by

�� n „� … ƒ
�
n

P
Q

; (5.39)
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where

P ƒ
�X

j ƒ 0

� n ‚ 1
j

„� ‚ 1…�j � �

�
n ‚ � ‚ 1

„� ‚ 1…�j � �
�

„� ‚ 1…�j
„„� ‚ 1…�j � �…2

�
;

Q ƒ
�X

j ƒ 0

� n ‚ � ‚ 1
j

„� ‚ 1…�j � �
: (5.40)

Proof. By (5.9) and (5.10) we have

Zn „� … ƒ
�X

j ƒ 0

� n ‚ � ‚ 1
j

„� ‚ 1…�j � �
; (5.41)

where � j are the „� ‚ 1…roots � of (5.11). By implicit di�erentiation of (5.11) with
respect to � we �nd

d� j

d�
ƒ

1

� � � 1
j

1
„� ‚ 1…�j � �

: (5.42)

Then from (5.41) and (5.42) we get

dZn „� …
d�

ƒ
�X

j ƒ 0

� „n ‚ � ‚ 1…�n ‚ �
j

„� ‚ 1…�j � �
�

„� ‚ 1…�n ‚ � ‚ 1
j

„„� ‚ 1…�j � �…2

�
d � j

d�

ƒ
�X

j ƒ 0

� n ‚ 1
j

„� ‚ 1…�j � �

�
n ‚ � ‚ 1

„� ‚ 1…�j � �
�

„� ‚ 1…�j
„„� ‚ 1…�j � �…2

�
: (5.43)

The result follows from substituting (5.41) and (5.43) into (5.38).

When the network grows large ( n ! 1 ) the root of largest modulus, � 0 , becomes
dominant, and (5.39)-(5.40) simpli�es.

Corollary 5.1. Let � i ƒ � , i ƒ 1; : : : ; n . The limiting average per-node throughput
��„� … ƒ lim n!1 �� n „� … is given by

��„� … ƒ
� 0 � 1

„� ‚ 1…�0 � �
: (5.44)

Proof. We have, as n ! 1 ,

P ƒ
� n ‚ 1

0

„� ‚ 1…�0 � �
n

„� ‚ 1…�0 � �
„1 ‚ o„ 1……; Qƒ

� n ‚ � ‚ 1
0

„� ‚ 1…�0 � �
„1 ‚ o„ 1……:(5.45)

Hence

�� n „� … ƒ
�
n

P
Q

ƒ
� � � �

0

„� ‚ 1…�0 � �
„1 ‚ o„ 1……;

and the result follows as � � � �
0 ƒ � 0 � 1 by (5.11).

The limiting expression (5.44) occurs in a variety of contex ts in [6, 22, 71, 93, 106].
When �� ! 1 , the throughput (5.44) simpli�es even further.
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Corollary 5.2. Let � i ƒ � , i ƒ 1; : : : ; n and let n ! 1 . The limiting average through-
put satis�es

��„� … ƒ
1

� ‚ 1
„1 ‚ o„ 1……; �� ! 1 :

Proof. By rewriting (5.44) we have

��„� … ƒ
1

� ‚ 1
1

1 ‚ 1
„� ‚ 1…„�0 � 1…

:

Consequently, for ��„� … ƒ 1
� ‚ 1 „1 ‚ o„ 1……to hold, it is necessary and su�cient that

„� ‚ 1…„�0 � 1…! 1 . Recall from (5.11) that � 0 is such that

� �
0 „� 0 � 1…ƒ � : (5.46)

Let M > 0 be some positive constant, and assume that �� � M . Then

�� �
0 „� 0 � 1…ƒ �� � M;

and so �„� 0 � 1…� M . Conversely, assume that �„� 0 � 1…� K for some positive
constant K > 0. Then

�� ƒ �„� 0 � 1…��0 � �„� 0 � 1…exp„�„� 0 � 1……� KeK :

Hence
�„� 0 � 1…bounded a �� bounded :

It follows that a su�cient condition for „� ‚ 1…„�0 � 1…! 1 is that �� ! 1 .

Corollary 5.2 implies that ��„� … ! 1
� ‚ 1 for � �xed and � ! 1 . Thus for n ! 1 ,

both the equal and fair back-o� rates can achieve the maximum throughput by letting
� ! 1 and � ! 1 , respectively.

Next, we �x � > 0 and search for � ƒ � n „� … such that

�� n „� … ƒ
�

1 ‚ �„� ‚ 1…
; (5.47)

so the network-average throughput is identical for the fair rates and equal rates.
For �„� … ƒ lim n!1 � n „� … we can make this comparison explicit. By equating (5.26)
and (5.44) and solving for � , we have �„� … ƒ � 0 � 1.

It is intuitively clear that imposing fairness may compromi se the throughput.
From (5.26) it is seen that the fair per-node throughputs are bounded from above
by 1

� ‚ 1 , and that this upper bound can be approached arbitrarily clo sely by letting
� ! 1 . Corollary 5.1 shows that, as n ! 1 , the average throughputs in the fair case
and unfair case are equal when � is taken to be � 0 � 1. The maximum back-o� rate
in this limiting case equals

� �
max ƒ �„ 1 ‚ �…� ƒ � i ; � ‚ 1 � i � n � �

as is seen from (5.25). This maximum equals � by (5.46) since 1 ‚ � ƒ � 0. Hence, as
n ! 1 , the fair case achieves the same average throughput with bac k-o� rates that
are less than or equal to those in the unfair case.
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Appendix

5.A Proof of Proposition 5.1

We �rst establish an auxiliary result. De�ne a„i; l; n… as the number of states in which
exactly l nodes are active, including node i . For successive nodes, the following rela-
tions hold.

Lemma 5.2. For n 2 N; i �
l

n
2

m
� 1,

a„i; l; n… ƒ a„i ‚ 1; l; n…; l� i; (5.48)

a„i; l; n… > a„i ‚ 1; l; n…; iodd ; i < l � d n=2e; (5.49)

a„i; l; n… < a„i ‚ 1; l; n…; ieven; i < l � d n=2e: (5.50)

Proof. The proof is by induction on i . Separating the states based on activity of
node 1 and node n yields the relations

a„i; l; n… ƒ a„i � 2; l � 1; n � 2…‚ a„i � 1; l; n � 1…; (5.51)

a„i; l; n… ƒ a„i; l � 1; n � 2…‚ a„i; l; n � 1…; (5.52)

with boundary conditions a„ 0; l; n…ƒ 0 for all n and l , a„ 1; l; n…ƒ 1 for l > 0 and all n
and a„ 1; l; n…ƒ 0 for l � 0 and all n . Hence, the initialization step of the induction is

a„ 0; l; n… < a„1; l; n…; 0 < l < dn=2e;

a„ 0; l; n…ƒ a„ 1; l; n…; l� 0:

Consider odd i � d n=2e � 2, let i ‚ 1 < l < dn=2e, and assume a„i; l; n… > a„i ‚ 1; l; n….
Using (5.51) and (5.52) we get

a„i ‚ 1; l; n…ƒ a„i ‚ 1; l � 1; n � 2…‚ a„i ‚ 1; l; n � 1…

< a„i; l � 1; n � 2…‚ a„i ‚ 1; l; n � 1…ƒ a„i ‚ 2; l; n…:

This proves assertion (5.49). Assertions (5.48) and (5.50) can be proved in a similar
manner.

We now use Lemma 5.2 to prove Proposition 5.1.

Proof. (Proposition 5.1) By relabeling the nodes in reverse order, we have that a„i; l; n… ƒ
a„n ‚ i � 1; l; n…. Using this, Assertion (i) can be shown by rewriting the thro ughput
as follows:

� i ƒ Z � 1
n

X

l

a„i; l; n…� l ƒ Z � 1
n

X

l

a„n � i ‚ 1; l; n…� l ƒ � n � i ‚ 1 :

To prove assertion (ii) we �rst show that „ � 1…i „� i ‚ 1 � � i …is positive. That is,

„ � 1…i „� i ‚ 1 � � i …ƒ „ � 1…i Z � 1
n

X

l

„a„i ‚ 1; l; n…� a„i; l; n…… � l

ƒ 2„ � 1…i Z � 1
n

bn=2cX

l ƒ i ‚ 1

„a„i ‚ 1; l; n…� a„i; l; n…… � l > 0; (5.53)





6
Achieving target throughputs

In this chapter we consider the CSMA model introduced in Sect ion 1.3.2, and discuss
the problem of determining the back-o� rates that yield an ar bitrary target throughput
vector for general con�ict graphs. To this end we study the th roughput function that
maps the back-o� rates to the throughputs, and show that it is globally invertible .
That is, every throughput vector inside the capacity region of the network can be
achieved by a unique vector of back-o� rates.

The present setting can be seen as a generalization of the pro blem considered
in Chapter 5, where we focused on linear networks and equal th roughputs. Explicit
solutions for the inverse as obtained in Chapter 5 remain elu sive for general con�ict
graphs and target throughputs. Instead we present three num erical methods to de-
termine the inverse: �xed-point iteration, basic Newton it eration, and a continuation
method (consisting of a sequence of Newton iteration steps) .

This chapter is organized as follows. In Section 6.1 we intro duce the model and de-
scribe the throughput function. Our main results on global i nvertibility are presented
in Section 6.2. In Section 6.3 we describe several numerical methods for determining
the inverse throughput function. Section 6.4 is concerned w ith results for special
con�ict graphs, including an alternative proof of Theorem 5 .2 using Markov random
�elds. Finally, Section 6.5 presents some conclusions and a discussion.
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6.1 Model description

Consider the CSMA model from Section 1.3.2 on a general con�i ct graph. The back-
o� times and transmission durations are exponentially dist ributed. Since all results
pertain to the stationary behavior of the CSMA model, we know by Theorem 4.1 that
these remain valid for generally distributed back-o� times and transmissions dura-
tions. The stationary distribution of the activity process (1.8) only depends on the
ratio between transmission rates and back-o� rates, so with out loss of generality we
can set � i � 1.

Denote the number of feasible states by K ‚ 1, and write 
 ƒ f ! 0 ; ! 1 ; : : : ; ! K g. The
states are ordered such that ! 0 ƒ 0 (the empty state) and ! k ƒ ek , the kth unit vector
of Rn , k ƒ 1; 2 : : : ; n . Note that the case K ƒ n corresponds to the complete con�ict
graph, for which at most one node can be active at any time.

Recall that the stationary distribution of the activity pro cess is denoted by � ,
with probability � „ y …as in (1.8). For the purpose of this chapter it is convenient t o
explicitly re�ect the ordering of the states and the depende nce on the back-o� rate
vector � ƒ „� 1 ; � 2 ; : : : ; � n …T in the notation, and introduce

� k „ � …ƒ �„ ! k …ƒ
� k „ � …
Z„ � …

; k ƒ 0; 1; : : : ; K;

with ! k ƒ „! k;1 ; : : : ; ! k;n …T ,

� k „ � …ƒ
nY

i ƒ 1

�
! k;i
i ; (6.1)

and Z„ � …ƒ
P K

kƒ 0 � k „ � …the normalization constant.

We write the throughput of node i as � i „ � …, in order to explicitly re�ect the de-
pendence of the throughput on the back-o� rates. The through put vector � „ � …ƒ
„� 1 „ � …; �2„ � …; : : : ; �n „ � ……T may be written as

� „ � …ƒ
KX

kƒ 0

� k „ � …! k :

Recall from Section 1.3.5 that the range � of the mapping � : Rn
‚ ! � is the interior of

the convex hull formed by all states ! 0 ; ! 1 ; : : : ; ! K , i.e.,

� ƒ int
n KX

kƒ 0

� k ! k

���
KX

kƒ 0

� k ƒ 1; � k � 0; k ƒ 0; : : : ; K
o

:

The problem of �nding back-o� rates that achieve a certain th roughput vector can be
formulated as �nding � � ƒ � � „ 
 …that solves

� „ � � …ƒ 
 ; (6.2)

with 
 ƒ „
 1 ; : : : ; 
 n …T 2 � . We thus need to study the mapping � in detail.
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6.2 Global invertibility

We �rst consider the non-normalized throughput

� „ � …ƒ Z„ � …� „ � …ƒ
KX

kƒ 0

� k „ � …! k :

This function is monotone in � and hence easier to handle than the normalized
throughput:

Theorem 6.1. The mapping � : Rn
‚ ! Rn

‚ is globally invertible on its range Rn
‚ .

The proof of Theorem 6.1 is presented in Appendix 6.A.1. Theo rem 6.1 says that
the range of � is Rn

‚ , and that for any 
 2 Rn
‚ we can �nd a unique � � ƒ � � „ 
 …that

solves

� „ � � …ƒ 
 : (6.3)

In some cases, it might be bene�cial from a computational poi nt of view to invert �
rather than � . Although � only represents the non-normalized throughput, this is
su�cient when interested solely in the throughput ratios (f or instance, when aiming
for strict fairness).

The di�erence between � and � is embodied by the normalization constant Z„ � …,
for which we have the following result.

Lemma 6.1. Let c 2 Rn
‚ , s > 0 and write � � „s c…for the unique � 2 Rn

‚ such that
� „ � � „s c……ƒ sc. Then, the function f c „s…ƒ s=Z„ � � „s c……is injective.

The proof of Lemma 6.1 is presented in Appendix 6.A.2. Lemma 6 .1 suggests that
we can control the throughput � via the non-normalized throughput � , and indeed,
it turns out to be a crucial ingredient in the proof of the foll owing result.

Theorem 6.2. The mapping � : Rn
‚ ! � is globally invertible on � .

Proof. It su�ces to show that � is injective. Let � 1 ; � 2 2 Rn
‚ be such that � „ � 1…ƒ

� „ � 2…. Then we have

� „ � 1…ƒ Z„ � 1…� „ � 1…; � „ � 2…ƒ Z„ � 2…� „ � 2…: (6.4)

With c ƒ � „ � 1…ƒ � „ � 2…2 Rn
‚ , we consider the trajectory � � „s c…, s > 0, for which we

have

� „ � � „s c……ƒ sc ƒ Z„ � � „s c……� „ � � „s c……: (6.5)

With s1 ƒ Z„ � 1…, s2 ƒ Z„ � 2…, it follows from Theorem 6.1 and (6.4), (6.5) that � � „s1c…ƒ
� 1 , � � „s2c…ƒ � 2 , and that

1
s1

Z„ � � „s1c……ƒ
1
s2

Z„ � � „s2c……:

Hence, by injectivity of f c „s…in Lemma 6.1, it follows that s1 ƒ s2 , so that � 1 ƒ � 2 .
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Theorem 6.2 says that for any 
 2 � , there is a unique vector � � ƒ � � „ 
 …that
solves (6.2). The proofs of Theorems 6.1 and 6.2 require the d escription of the entire
network structure, which appears at odds with the distribut ed nature of CSMA. How-
ever, in actual implementations, the back-o� rates only hav e to be determined once,
after which the nodes can operate fully autonomously. Thus, if the network structure
is �xed, or if the time scale on which it changes is slower than that of the network
operations, we retain a fully distributed CSMA protocol, wh ile achieving the target
throughputs.

6.3 Inversion methods

In Section 6.2 we established that both the non-normalized t hroughput � and the nor-
malized throughput � are globally invertible on their respective ranges. In this section
we present several numerical procedures to compute the inve rse of a given (normal-
ized) throughput vector, as well as a light-tra�c approxima tion of the throughput
inverse.

6.3.1 Fixed-point iteration

A �rst numerical procedure to determine the inverse is �xed- point iteration. This
procedure follows naturally from rewriting the system of no n-linear equations (6.2)
as a �xed-point equation. We distinguish between normalize d throughput and non-
normalized throughput.

Non-normalized throughput

Write

� i „ � …ƒ
nX

kƒ 0

� k „ � …! k;i ‚
KX

kƒ n ‚ 1

� k „ � …! k;i ƒ � i
1 ‚ Gi „ � …

Z„ � …
; (6.6)

with

Gi „ � …ƒ
1
� i

KX

kƒ n ‚ 1

� k „ � …! k;i : (6.7)

We can thus write (6.3) as
� � ƒ H„ � � …;

where
H„ � …ƒ

� 
 i

1 ‚ Gi „ � …

�

i ƒ 1;:::;n
;

and Gi as in (6.7). Note that H : †0; 
 ‡ ! †0; 
 ‡, where we denote †0; 
 ‡ ƒ †0; 
 1‡ �
� � � � †0; 
 n ‡. By global invertibility of � , we know that � � is the unique �xed point
that solves � � ƒ H„ � � …. Alternatively, since H is continuous, the existence of a �xed
point also follows directly from Brouwer's �xed-point theo rem.

The �xed-point iteration is de�ned as

� „0…
� ƒ 0; � „l ‚ 1…

� ƒ H„ � „l…
� …; lƒ 0; 1; : : : : (6.8)

We next show that the iterands obtained through (6.8) approa ch the �xed point in a
monotone fashion.
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Proposition 6.1. Assume that the con�ict graph has no fully connected nodes (n odes
that are connected to all the other nodes). Then, for i ƒ 1; 2; : : : ; n and l ƒ 1; 2; : : : ,

0 ƒ � „0…
�;i < � „2…

�;i < � � � < � „2l � 2…
�;i < � �;i < � „2l � 1…

�;i < � „2l � 3…
�;i < � � � < � „3…

�;i < � „1…
�;i ƒ 
 i :

(6.9)

Proof. We have � „0…
� ƒ 0 by de�nition, � „1…

� ƒ 
 since Gi „0…ƒ 0, i ƒ 1; : : : ; n , and
0 < � �;i < 
 i , i ƒ 1; : : : ; n . Now let l be such that (6.9) holds for all i ƒ 1; : : : ; n . Then

� �;i < � „2l � 1…
�;i , i ƒ 1; : : : ; n , and by the exclusion of fully connected nodes we have that

Gi „ � � … < Gi „ � „2l � 1…
� …; iƒ 1; : : : ; n;

and so
H i „ � � … > Hi „ � „2l � 1…

� …ƒ � „2l…
�;i ; i ƒ 1; : : : ; n;

i.e.,
� �;i > � „2l…

�;i ; i ƒ 1; : : : ; n: (6.10)

In a similar fashion it follows from (6.10) that

� �;i < � „2l ‚ 1…
�;i ; i ƒ 1; : : : ; n:

The proof follows by induction.

Proposition 6.1 shows that the iteration scheme in (6.8) app roaches the �xed point
ever more closely, although it does not necessarily imply co nvergence.

Normalized throughput

We now present a similar �xed-point iteration scheme for � � „ 
 …. Setting � „ � � …ƒ 

and rewriting (6.6) yields � � ƒ K„ � � …with

K„ � …ƒ
�


 i Z„ � …
1 ‚ Gi „ � …

�

i ƒ 1;:::;n
: (6.11)

We have thus established that � � „ 
 …is the unique solution to the �xed-point equa-
tion (6.11), and we can again try to �nd � � „ 
 …by iteration. That is, we let � „0…

� ƒ 0
and recursively de�ne

� „l ‚ 1…
� ƒ K„ � „l…

� …; lƒ 0; 1; : : : : (6.12)

To gain some insight into this �xed-point iteration, below w e give two special cases
for which we can prove convergence to the �xed point.

Example 6.1. (Complete con�ict graph) Assume that only one node may be active at
any time. Let 
 ƒ „
; : : : ; 
… T , 
 2 R ‚ . By symmetry, both the solution � � „ 
 …as well
as the iterands � „l…

� , l ƒ 0; 1; : : : have identical components. Thus Z„ � � …ƒ 1 ‚ n� �; 1

and Gi „ � � …ƒ 0. Iterating according to (6.12), gives for all i ƒ 1; 2; : : : ; n ,

� „l…
�;i ƒ 
„ 1 ‚ n
 ‚ � � � ‚ „n
… l � 1…; lƒ 0; 1; : : : ;

and � �;i „ 
 …ƒ lim l !1 � „l…
�;i ƒ 


1� n
 for 
 < 1
n . The requirement for convergence 
 < 1

n
is equivalent to 
 2 � .
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In this particular example, � � „ 
 …can also be determined analytically. Noting that
at most one node can be active at a time, and assuming all nodes to have the same back-
o� rate, it was shown in [92] that the throughput of node i equals � i ƒ � �; 1=„1 ‚ n� �; 1….
Solving 
 ƒ � i for � � then gives the same result as the �xed-point iteration.

Example 6.2. (Isolated nodes) Assume that all nodes are isolated ( E ƒ ; ). As nodes
do not interact, the throughput of node i equals � �;i =„1 ‚ � �;i …, and thus the choice
� �;i ƒ 
=„ 1 � 
…, yields per-node throughputs 
 , 
 < 1.

The same result can be obtained by �xed-point iteration. Let 
 ƒ „
; : : : ; 
… T ,

 2 R ‚ , so the target vector, solution and iterands have identical components. We
have

Z„ � � …ƒ

 
n
0

!

‚

 
n
1

!

� �; 1 ‚

 
n
2

!

� 2
�; 1 ‚ � � � ‚

 
n
n

!

� n
�; 1 ƒ „1 ‚ � �; 1…n

and

Gi „ � � …ƒ

 
n � 1

1

!

� �; 1 ‚

 
n � 1

2

!

� 2
�; 1 ‚ � � � ‚

 
n � 1
n � 1

!

� n � 1
�; 1

ƒ „1 ‚ � �; 1…n � 1 � 1;

so that
K i „ � � …ƒ 
„ 1 ‚ � �; 1…: (6.13)

By iterating (6.13), we get for all i ƒ 1; 2; : : : ; n ,

� „l…
�;i ƒ 
 ‚ 
 2 ‚ � � � ‚ 
 l ; l ƒ 0; 1; : : : :

Thus � �;i „ 
 …ƒ lim l !1 � „l…
�;i ƒ 
=„ 1 � 
…, as expected.

Due to the inclusion of the normalization constant, the �xed -point iteration for
the normalized throughput becomes theoretically less trac table than for the non-
normalized throughput, and the counterpart of Proposition 6.1 remains elusive. In
applying the iteration (6.12), though, we have encountered no convergence issues. See
Section 6.3.3 for an example of a successful application of � xed-point iteration. In fact,
for both the non-normalized and normalized throughputs the �xed-point iterations
seems to work well.

6.3.2 Newton-based methods

A second numerical method for inverting the throughput func tion is Newton iteration.
We present two versions: classical Newton iteration, and a c ontinuation method. The
latter method consists of a sequence of Newton iteration ste ps. Since there is no
essential di�erence in these methods between the non-norma lized and normalized
case, we present the numerical procedures only for the norma lized throughput � .

Classical Newton iteration

Recall from basic Newton iteration that one selects an initi al vector � „0…
� 2 � , and

iterates according to

� „l ‚ 1…
� ƒ � „l…

� �
� @�

@�
„ � „l…

� …
� � 1

„ 
 � � „ � „l…
� ……; lƒ 0; 1; : : : ;
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state of its boundary, and is independent of all other nodes. That is, for a general
con�ict graph G, for any y 2 
 and nonempty strict subset S � V , we have

P„Y S ƒ y Sj Y VnS ƒ y VnS…ƒ P„Y S ƒ y Sj Y @Sƒ y @S…; (6.14)

with Y S ƒ „Y i …i 2 S the components of the vector Y indexed by S, and @Sƒ f j 2 V n S :
f i; j g 2 E for some i 2 Sg, the boundary of S.

The next proposition identi�es the `fair' back-o� rates tha t render equal through-
puts for all nodes in a linear topology. In particular, we con sider n nodes on a line
with a � -hop interference range, i.e., each node interferes with up to � adjacent nodes
to the left and to the right, n � � . Note that this proposition is a reformulation of
Theorem 5.2.

Proposition 6.3. Consider the con�ict graph that arises from the linear netwo rk de-
scribed above, and let 
 ƒ „
; : : : ; 
… with 
 < 1=„� ‚ 1…. Then

� �;i „ 
 …ƒ

„ 1 � �
… h i � 1

„1 � „� ‚ 1…
…h i
;

with

h i ƒ

8
><

>:

i; i ƒ 1; : : : ; �;
� ‚ 1; i ƒ � ‚ 1; : : : ; n � �;
n � i ‚ 1; i ƒ n � � ‚ 1; : : : ; n;

the number of interferers of node i minus � � 1.

Note that 
 ! 1=„� ‚ 1…as � �;i „ 
 …! 1 , so that the throughput approaches the
maximum achievable fair throughput as the back-o� rates ten d to in�nity. The proof
of Proposition 6.3 can be found in Appendix 6.A.3. It is based on the Markov random
�eld representation of the stationary distribution of the j oint activity state, extending
the approach in [39].

Before proceeding, we �rst introduce some additional notat ion. For any subset S �
V , we may consider a modi�ed version of the system with the node s in V nS removed,
or equivalently, a system associated with a con�ict graph th at is the subgraph of G
induced by the nodes in S and the same back-o� rates. For brevity, we will call such
a modi�ed version the system induced by S. Denote by Y „S…a random variable with
the stationary distribution of the activity process in the s ystem induced by S and
by � „S…ƒ „� v „S……v 2 S the associated throughput vector. Moreover, for any S � V ,
W � V n S, let

� „S; y W …ƒ S n
[

i 2 W:y i ƒ 1

N i

be the set of those nodes in S that are not blocked by nodes active under y W . By the
de�nition of @S, we have that � „S; y VnS…ƒ � „S; y @S…. Finally, let us denote by 
 S the
state space restricted to S.

Recall that N i ƒ f j : f i; j g 2 Eg is the set of neighbors of node i in the con�ict
graph G. We will now apply the property in (6.14) to show that the prob lem of �nding
the stationary distribution of S can be reduced to �nding the stationary distribution
of several smaller systems, by conditioning on the state of @S.
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V1 V2

v

Figure 6.2: A decomposable graph

Proposition 6.4. For any con�ict graph G ƒ „V ; E…, S � V , and y S 2 f 0; 1gj Sj ,

P„Y S ƒ y S…ƒ
X

y @S2 
 @S

P„Y „ � „S; y @S……ƒ y � „S ;y @S……

� 1 f
P

i 2 @S
P

j 2N i
y i y j ƒ 0gP„Y @Sƒ y @S…: (6.15)

The proof of Proposition 6.4 is given in Appendix 6.A.4.
Proposition 6.4 may seem convoluted, but can be very useful i n certain con�ict

graphs for reducing the complexity of solving inversion pro blems, by choosing the
set S in a judicious way. For example, consider the con�ict graph i n Figure 6.2. In this
case, the node set can be partitioned into two subsets V1 and V2 and a single node v ,
so V ƒ V1 [ V2 [ f v g. The sets V1 and V2 are not connected, and v shares edges with
nodes in both subgraphs. We can decompose the graphs V1 and V2 as follows.

Corollary 6.1. For any y V1 2 f 0; 1gj V1 j ,

P„Y V1 ƒ y V1 …ƒ P„Y „V 1…ƒ y V1 …„1 � � v „V……

‚ P„Y „V 1 n N v …ƒ y V1nN v …1 f y N v ƒ 0g� v „V…:

In particular, for any i 2 V1 [ N v ,

� i „V…ƒ � i „V 1…„1 � � v „V……; (6.16)

and for any i 2 V1 n N v ,

� i „V…ƒ � i „V 1…„1 � � v „V……‚ � i „V 1 n N v …�v „V…: (6.17)

The proof of Corollary 6.1 is presented in Appendix 6.A.5.
If we now substitute � v „V…ƒ 
 v into (6.16) and (6.17), then we see that the result-

ing inverse problem for �nding � �;i only depends on the nodes in V1 , and no longer
requires knowledge about any node in V2 . This allows us to solve the inversion prob-
lems for V1 and V2 separately. Doing so considerably reduces the complexity, as the
number of feasible states of the induced subgraph on V1 is much smaller than that
of the entire graph. The result in Corollary 6.1 can also be ap plied when v is replaced
by a clique of nodes. Naturally, when the con�ict graph is dis connected, each of the
components can also be handled separately.
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6.5 Concluding remarks

In this chapter we have established global invertibility of both the non-normalized and
normalized throughput function for CSMA networks on genera l con�ict graphs. This
fundamental result, presented in Section 6.2, states that f or any throughput vector
inside the network capacity region there exists a unique vec tor of back-o� rates that
will lead to that throughput vector. This result allows us, f or example, to compute
the back-o� rates that give equal throughputs among all node s, or instead to create
various user classes by designing the back-o� rates so as to g ive certain nodes higher
throughput than others. From Theorem 6.2 it immediately fol lows that the fair back-
o� rates obtained in Chapter 5 (for linear networks) are in fa ct unique.

In Section 6.3 we presented several algorithms for determin ing the back-o� rates.
The implementation of these algorithms involves the comput ation of the normaliza-
tion constant Z„ � …, the (inverse of) the functional matrix @� =@� , and the functions Gi

in (6.7). These require the enumeration of the entire state s pace 
 , which essentially
boils down to counting all independent sets of the con�ict gr aph, a problem which is
known to be computationally cumbersome for large graphs. An important task for
future research is to �nd ways of dealing with this curse of di mensionality. One pos-
sible approach is to exploit the structure of the con�ict gra phs and using the theory
of Markov random �elds, as was done in Section 6.4. Another ap proach is to use the
distributed algorithms in [34, 36].

Appendix

6.A Remaining proofs

6.A.1 Proof of Theorem 6.1

Rather than showing invertibility of � itself, we consider the mapping

f „x…ƒ ln � „ex …; x ƒ „x 1 ; x2 ; : : : ; x n …T 2 Rn ;

with e x ƒ „ex1 ; ex2 ; : : : ; exn …T and ln y ƒ „ ln y1 ; : : : ; ln yn …T for y ƒ „y 1 ; y2 ; : : : ; y n …T 2
Rn . Because ln and exp are invertible, global invertibility of f and � is equivalent.

By the main result in [99] we have that f is globally invertible if and only if (i) f is
locally invertible and (ii) max i j f i „x…j ! 1 as max i j x i j ! 1 .

To show that condition (i) holds, it su�ces to show that the fu nctional matrix

@f
@x

ƒ
� @fi

@xj

�

i;j ƒ 1;:::;n
;

is non-singular at any point x 2 Rn . Observe that

@fi
@xj

ƒ
1

� i „ex …
@�i „ex …

@ex j

@x
@xj

ƒ
1

� i „ � …
@�i „ � …

@�j
� j :

Thus
@f
@x

ƒ diag
� 1

� 1 „ � …
; : : : ;

1
� n „ � …

� @�
@�

diag „� 1 ; : : : � n …; (6.18)
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with
@�
@�

ƒ
� @�i

@�j

�
i;j ƒ 1;:::;n :

Because � 1 ; : : : ; � n > 0, both diagonal matrices in (6.18) are non-singular, and we only
have to verify that @� =@� is non-singular as well.

By taking the derivative of � k „ � …, see (6.1), with respect to � j , we get

@� k „ � …
@�j

ƒ
1
� j

� k „ � …1 f ! k;j ƒ 1g; k ƒ 0; 1; : : : ; K; j ƒ 1; : : : ; n:

Consequently,

@�i
@�j

ƒ
1
� j

KX

kƒ 0

! k;i ! k;j � k „ � …; i; j ƒ 1; 2; : : : ; n: (6.19)

Thus the functional matrix @�
@� may be written as

@�
@�

ƒ P„ � …D„ � …;

with

P„ � …ƒ
KX

kƒ 0

� k „ � …! k ! T
k ;

and
D„ � …ƒ diag „� � 1

1 ; : : : ; � � 1
n …: (6.20)

The matrix P is positive de�nite since � k „ � … >0, ! k ƒ ek , k ƒ 1; 2; : : : ; n . Therefore,
@�
@� is non-singular, as required.

In order to verify condition (ii), we write � „ex …as

� i „ex …ƒ ex i

�
1 ‚ e� x i

KX

kƒ n ‚ 1

� k „ex …! k;i

�
: (6.21)

Let

m ƒ min
i

ex i ; M ƒ max
i

ex i ;

a ƒ � min
i

x i ; b ƒ max
i

x i :

It is seen from (6.1) and (6.21) that

max
i

� i „ex …� M ƒ eb ; (6.22)

min
i

� i „ex …� m„ 1 ‚ „K � n…Mn � 1…ƒ e� a „1 ‚ „K � n…e„n � 1…b…: (6.23)

Assume that max i j x i j ƒ max f a; b g ! 1 . We need to show that max i j f i „x…j ! 1 as
well.

When b � a we have

max
i

j f i „ex …j � b ƒ max f a; b g: (6.24)
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When b � a, we see from (6.22) and (6.23) that

max
i

j f i „x…j � max f b; a � ln „1 ‚ „K � n…e„n � 1…b…g � max f b; a � A � Bbg;

for some A; B > 0 only depending on K; n . Now

min
0� b � � a

max f b � ; a � A � Bb� g � b„a…;

with b„a…the solution of b ƒ a � A � Bb, i.e., b„a…ƒ a� A
B‚ 1 . Hence, when a � b

max
i

j f i „ex …j �
a � A
B ‚ 1

ƒ
max f a:b g � A

B ‚ 1
: (6.25)

From (6.24) and (6.25) we see that

max
i

j f i „ex …j ! 1

as max f a; b g ! 1 , and the proof is complete.

6.A.2 Proof of Lemma 6.1

In order to prove this lemma, we compute some derivatives. We have, see (6.19),

@Z„� …
@�j

ƒ
KX

kƒ 0

! k;j
1
� j

� k „ � …ƒ
1
� j

� j „ � …; jƒ 1; : : : ; n:

Recall from (6.19) that

@�i
@�j

ƒ
1
� j

KX

kƒ 0

! k;i ! k;j � k „ � …; i; j ƒ 1; 2; : : : ; n:

Di�erentiating � „ � � „s c……ƒ sc with respect to s, we see that

@�
@�

„ � � „s c……� � 0
� „s c…ƒ c;

i.e.,

� 0
� „s c…ƒ

� d„ � � „s c……1
ds

; : : : ;
d„ � � „s c……n

ds

� T
ƒ

� @�
@�

„ � � „s c……
� � 1

c: (6.26)

Moreover, we have

@�i
@�j

ƒ
@

@�j

� � i „ � …
Z„ � …

�
ƒ

1
Z 2„ � …

� @�i „ � …
@�j

Z„ � …� � i „ � …
@Z„� …

@�j

�

ƒ
1
� j

� KX

kƒ 0

� k „ � …! k;i ! k;j �
KX

kƒ 0

� k „ � …! k;i

KX

kƒ 0

� k „ � …! k;j

�
:

Note that
P K

kƒ 0 � k „ � …ƒ 1 and that � „ � …ƒ
P K

kƒ 0 � k „ � …! k . Hence we have

@�i
@�j

ƒ
KX

kƒ 0

� k „ � …
�
! k � � „ � …

�
i

�
! k � � „ � …

� T
j

1
� j

: (6.27)



98 Achieving target throughputs

So
@�
@�

ƒ Q „ � …D„ � …; (6.28)

with D the diagonal matrix in (6.20) and

Q „ � …ƒ
KX

kƒ 0

� k „ � …
�
! k � � „ � …

��
! k � � „ � …

� T : (6.29)

From this characterization it is clear that Q „ � …is positive semide�nite, and we will
show below that this matrix is in fact positive de�nite. Assu ming this, we compute
from � „ � � „s c……ƒ s

Z„ � � „s c……c, for any s > 0

@�
@�

„ � � „s c……� 0
� „s c…ƒ f 0

c „s…c: (6.30)

By (6.26) we have that � 0
� „s c…” 0 and by the fact that Q „ � …is positive de�nite

and (6.28) we have that @�
@� is non-singular at � ƒ � � „s c…. Hence, the left-hand side

of (6.30) is a non-zero vector and so f 0
c „s…c ” 0. Hence f 0

c „s…” 0 for any s > 0. Since
f c „0…ƒ 0, f c „s… >0 for s > 0, the claim follows.

It remains to show that Q „ � …is positive de�nite. Assume y 2 Rn is such that
Q „ � …y ƒ 0. Then

0 ƒ y T Q „ � …y ƒ
KX

kƒ 0

� k „ � …
�� „ ! k � � „ � ……T y

�� 2 ;

and so, as � k „ � … >0, k ƒ 0; 1; : : : ; K , we have

„ ! k � � „ � ……T y ƒ 0; k ƒ 0; 1; : : : ; K;

i.e.,

! T
k y ƒ � „ � …T y ; k ƒ 0; 1; : : : ; K: (6.31)

Since ! 0 ƒ 0, we get � „ � …T y ƒ 0 from (6.31) with k ƒ 0. Then, for k ƒ 1; : : : ; n , it
follows from ! k ƒ ek and (6.31) that

yk ƒ ! T
k y ƒ � „ � …T y ƒ 0:

Hence y ƒ 0. We conclude that Q „ � …is non-singular, and then from (6.29) it is seen
that Q „ � …is positive de�nite.

6.A.3 Proof of Proposition 6.3

For conciseness, denote

 i ƒ P„Y i � � ; : : : ; Yi � 1 ƒ 0…; iƒ � ‚ 1; : : : ; n ‚ 1;

and

a i ƒ P„Y i ƒ 0j Yi � � ; : : : ; Yi � 1 ƒ 0…; iƒ � ‚ 1; : : : ; n:
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By de�nition,

� i ƒ P„Y i ƒ 1…ƒ P„Y i ƒ 1; Yi � � ; : : : ; Yi � 1 ƒ 0…

ƒ P„Y i ƒ 1j Yi � � ; : : : ; Yi � 1 ƒ 0…P„Y i � � ; : : : ; Yi � 1 ƒ 0…ƒ „1 � a i … i ; (6.32)

for all i ƒ � ‚ 1; : : : ; n .
The idea of the proof is to consider probabilities of the form P„Y i ƒ 1; Yj ƒ 0; j 2

N i …and P„Y i ƒ 0; Yj ƒ 0; j 2 N i …and use two di�erent relationships between these
in order to obtain a set of equations for the coe�cients a i .

First of all, it follows from the product form of the stationa ry distribution (or the
local balance property) that

P„Y i ƒ 1; Yj ƒ 0; j 2 N i …ƒ � i P„Y i ƒ 0; Yj ƒ 0; j 2 N i …;

for all i ƒ 1; : : : ; n .
The second relationship between these two probabilities fo llows from the Markov

random �eld representation of the stationary distribution .
Speci�cally, for all i ƒ 1; : : : ; � , we may write

P„Y i ƒ 0; Yj ƒ 0; j 2 N i …ƒ P„Y1 ; : : : ; Y� ƒ 0…
iY

l ƒ � ‚ 1

P„Y i ƒ 0j Y1 ; : : : ; Yi � 1 ƒ 0…

ƒ  � ‚ 1

iY

l ƒ � ‚ 1

P„Y i ƒ 0j Yi � � ; : : : ; Yi � 1 ƒ 0…ƒ  � ‚ 1

iY

l ƒ � ‚ 1

a i :

For all i ƒ � ‚ 1; : : : ; n , we may write

P„Y i ƒ 0; Yj ƒ 0; j 2 N i …

ƒ P„Y i � � ; : : : ; Yi � 1 ƒ 0…
min f i ‚ �;n gY

l ƒ i

P„Y l ƒ 0j Yi � � ; : : : ; Yl � 1 ƒ 0…

ƒ  i

min f i ‚ �;n gY

l ƒ i

P„Y l ƒ 0j Yl � � ; : : : ; Yl � 1 ƒ 0…ƒ  i

min f i ‚ �;n gY

l ƒ i

a i ;

and

P„Y i ƒ 1; Yj ƒ 0; j 2 N i …

ƒ P„Y i � � ; : : : ; Yi � 1 ƒ 0…P„Y i ƒ 1j Yj ƒ 0; j 2 N �
i …

min f i ‚ �;n gY

l ƒ i ‚ 1

P„Y l ƒ 0j Yi ƒ 1; Yi � � ; : : : ; Yi � 1 ; Yi ‚ 1 ; : : : ; Yl � 1 ƒ 0…ƒ  i „1 � a i …;

yielding
P„Y i ƒ 1; Yj ƒ 0; j 2 N i …

1 � a i
ƒ

P„Y i ƒ 0; Yj ƒ 0; j 2 N i …

a i
Q min f i ‚ �;n g

j ƒ i ‚ 1 a j

:

Now observe that  i ‚
P i � 1

j ƒ i � � � j ƒ 1 for all i ƒ � ‚ 1; : : : ; n , and in particular  � ‚ 1 ‚
P �

j ƒ 1 � j ƒ 1. Combining the above two sets of equations, we obtain

� i ƒ � i „1 �
�X

j ƒ 1

� j …
i ‚ �Y

j ƒ � ‚ 1

a j ; (6.33)
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for i ƒ 1; : : : ; � , while

1 � a i ƒ � i a i

min f i ‚ �;n gY

j ƒ i ‚ 1

a j ; (6.34)

for all i ƒ � ‚ 1; : : : ; n .
A solution to (6.34) is provided by a i ƒ a and � i ƒ „1 � a…a� h i , or equivalently

� i ƒ �„ 1 ‚ �…h i � 1 , with � ƒ 1=a � 1 > 0. Taking � i ƒ „1 � a…a� h i , i ƒ 1; : : : ; � , we
obtain from (6.33)

� 1 ƒ � � � ƒ � � ƒ � ƒ „1 � a…„1 � ��…;

i.e.,

� 1 ƒ � � � ƒ � � ƒ � ƒ
1 � a

1 ‚ �„ 1 � a…
ƒ

�
1 ‚ „� ‚ 1…�

;

and (6.32) then yields

� ƒ
1 � a

1 ‚ �„ 1 � a…
ƒ

�
1 ‚ „� ‚ 1…�

for all i ƒ � ‚ 1; : : : ; n:

Noting that

a ƒ
1 � „� ‚ 1…�

1 � ��
or � ƒ

�
1 � „� ‚ 1…�

then completes the proof.

6.A.4 Proof of Proposition 6.4

The product form of the stationary distribution implies

P„Y S ƒ y S j Y VnS ƒ y VnS…

ƒ
P„Y S ƒ y S; Y VnS ƒ y VnS…

P„Y VnS ƒ y VnS…
ƒ

P„Y ƒ y …
P

„xS;y VnS…2 
 P„Y S ƒ xS; Y VnS ƒ y VnS…

ƒ

Z � 1
nQ

j ƒ 1
�

y j

j

Z � 1
P

„xS;y VnS…2 

Q

i 2 S
� x i

i

Q

i 62S
�

y j

j

ƒ K � 1 „S; y VnS…
Y

j 2 S

�
y j

j ;

for any y 2 
 , with

K„S ; y VnS…ƒ
X

xS:„ xS ;y VnS…2 


Y

i 2 S

� x i
i :

Note that Y

j 2 S

�
y j

j ƒ
Y

j 2 � „S ;y @S…

�
y j

j

for any y 2 
 . Likewise, Y

i 2 S

� x i
i ƒ

Y

i 2 � „S ;y @S…

� x i
i

for any „xS; y VnS…2 
 .
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Let 
 „S; y VnS…be the collection of independent sets in the subgraph of G induced
by � „S; y @S…. It is easily veri�ed that „xS; y VnS…2 
 if and only if it holds that
x � „S ;y @S…2 
 „S; y @S…. It follows that

K„S ; y VnS…ƒ
X

x � „S ;y @S…2 
 „S;y @S…

Y

i 2 � „S ;y @S…

� x i
i ;

and thus corresponds to the normalization constant of the sy stem induced by � „S; y @S….
We conclude that

P„Y S ƒ y Sj Y VnS ƒ y VnS…ƒ

Q

j 2 � „S ;y @S…
�

y j

j

P
x � „S ;y @S…2 
 „S;y @S…

Q

i 2 � „S ;y @S…
� x i

i

ƒ P„Y „ � „S; y @S……ƒ y � „S ;y @S……;

for any y 2 
 . Informally speaking, the distribution of the activity sta te of the nodes
in S in the original system, conditional on the activity states o f the remaining nodes,
equals the stationary distribution of the system induced by � „S; y @S…. Since � „S; y @S…
only depends on y VnS through y @S, it further follows that P„Y S ƒ y Sj Y VnS ƒ y VnS…ƒ
P„Y S ƒ y Sj Y @Sƒ y @S…. This corroborates the fact that the stationary distributi on is a
Markov random �eld with a neighborhood structure de�ned by t he con�ict graph G.

Now observe that

P„Y S ƒ y Sj Y VnS ƒ y VnS…ƒ P„Y S ƒ y Sj Y @Sƒ y @S…ƒ 0

unless X

i 2 @S

X

j 2N i

y i y j ƒ 0:

Thus we may write

P„Y S ƒ y Sj Y @Sƒ y @S…ƒ P„Y „ � „S; y @S……ƒ y � „S ;y @S……1 f
P

i 2 @S
P

j 2N i
y i y j ƒ 0g;

for all y 2 f 0; 1gV , rather than just y 2 
 .
We deduce that

P„Y S ƒ y S…ƒ
X

y @S2 
 @S

P„Y S ƒ y Sj Y @Sƒ y @S…P„Y @Sƒ y @S…

ƒ
X

y @S2 
 @S

P„Y „ � „S; y @S……ƒ y � „S ;y @S……1 f
P

i 2 @S
P

j 2N i
y i y j ƒ 0gP„Y @Sƒ y @S…: (6.35)

6.A.5 Proof of Corollary 6.1

For the speci�c graph under consideration, apply Propositi on 6.4 with S ƒ V1 so that
@Sƒ f v g. We have

P„Y V1 ƒ y V1 j Y VnV1 ƒ y VnV1 …ƒ P„Y V1 ƒ y V1 j Yv ƒ yv …1 f yv
P

j 2N v y j ƒ 0g

ƒ

(
P„Y „V 1…ƒ y V1 …; yv ƒ 0;
P„Y „V 1 n N v …ƒ y V1nN v …1 f y N v ƒ 0g; yv ƒ 1;





7
Optimal tradeoff between exposed

and hidden nodes

In this chapter we adapt the CSMA model introduced in Section 1.3.2 to incorporate
collisions, and we evaluate the impact of the carrier-sensi ng range on the network
performance. The e�ect of the sensing range can be understoo d as follows. A small
range allows for more simultaneous transmissions, but is le ss e�ective in reducing
collisions (hidden nodes). On the other hand, a large sensin g range mitigates interfer-
ence, but also admits fewer transmissions (exposed nodes). The model considered in
the present chapter di�ers slightly from that in Chapters 4- 6, where it was assumed
that the carrier-sensing mechanism precludes all collisio ns. In contrast to Chapters 4-
6, we assume that the back-o� rates and transmission rates of all nodes are �xed and
equal.

The main contribution of this chapter is the examination of t he impact of hidden
and exposed nodes on the throughput. We consider a linear net work in the asymptotic
regime where the number of nodes in the network tends to in�ni ty. For such networks
we are able to obtain structural results on the joint e�ect of hidden nodes and exposed
nodes. We determine analytically the throughput-optimal s ensing range that achieves
the best tradeo� between reducing hidden nodes and preventi ng exposed nodes.

This chapter is structured as follows. In Section 7.1 we intr oduce the model, and
derive some auxiliary results. Section 7.2 discusses the ma in results on the carrier-
sensing tradeo�. In Section 7.3 we perform a detailed study o f the normalization
constant. In Section 7.4 we validate the analytical results for the linear network by
simulation, and investigate networks with more general top ologies, and in Section 7.5
we present some concluding remarks.
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7.1 Model description and preliminary results

We again consider the CSMA model introduced in Section 1.3.2 . The network consists
of a linear array of 2 n ‚ 1 evenly spaced nodes with sensing range � , and we denote
the set of all nodes by N ƒ f� n; : : : ; n g. Since we aim to model collisions in this
chapter, we have to take the destination of each transmissio n into account. Whenever
a node activates, it transmits a single packet to a neighbori ng node. With probability
 , the packet is intended for its right neighbor, and with prob ability 1 �  for its
left neighbor. To accommodate this, we introduce (pure dest ination) nodes n ‚ 1 and
� „n ‚ 1…, which receive packets, but do not transmit packets themsel ves. As will be
shown in Proposition 7.2, the throughput is insensitive to t he parameter  .

The length of the back-o� period is assumed to be exponential ly distributed with
mean 1 =� , while transmissions last for an exponentially distribute d duration with
unit mean. As all results in this chapter are based on the stat ionary behavior of the
activity process, we know by Theorem 4.1 that these results i n fact hold for generally
distributed back-o� times and transmission durations.

Each state of the activity process is described by

! ƒ „! � n ; : : : ; ! n …2 f 0; 1g2n ‚ 1 :

This process has stationary distribution (see (1.8))

� „!… ƒ

(
Z � 1

2n ‚ 1

Q n
v ƒ� n � ! v ; if ! is feasible,

0; otherwise,
(7.1)

with Z2n ‚ 1 the normalization constant. The normalization constant ca n be de�ned
recursively as ([11, 71])

Z i ƒ

(
1 ‚ i� ; i ƒ 0; 1; : : : ; � ‚ 1;
Z i � 1 ‚ � Z i � � � 1 ; i � � ‚ 2:

The sequence „Z i …1
i ƒ 0 is well studied. In fact, for a network with i nodes, Z i represents

the normalization constant. Straightforward calculation s show that the generating
function GZ „x…of Z i can be written as (see [71])

GZ „x…ƒ
1X

i ƒ 0

Z i x i ƒ
x � 1 ‚ � x � ‚ 1 � � x

„x � 1…„1 � x � � x � ‚ 1…
: (7.2)

Let � 0 ; : : : ; � � denote the � ‚ 1 distinct roots (see Proposition 7.8) of

� � ‚ 1 � � � � � ƒ 0: (7.3)

We denote by � 0 the unique positive real root for which � 0 > j � j j ; j ” 0 (see [71]).
Applying partial fraction expansion to (7.2) yields the fol lowing result:

Proposition 7.1. The normalization constant Z i is given by

Z i ƒ
�X

j ƒ 0

cj � i
j ; i ƒ 0; 1; : : : ; (7.4)
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where � j are the roots of (7.3), and

cj ƒ
� � ‚ 1

j

„� ‚ 1…�j � �
:

The proof of Proposition 7.1 is provided in Appendix 7.A, alo ng with the other
proofs not given in the main text. The representation (7.4) w as also used in Chapter 5.
Note that Proposition 7.1 does not rely on previous results.

We use the protocol model discussed in Section 1.1.1 to descr ibe interference.
Since all nodes are evenly spaced, this model gives rise to an interference range � . We
assume that a transmission succeeds if and only if at the star t of this transmission
no nodes within distance � of the receiving node are already active. This type of
interference is referred to in the literature as the perfect capture collision model [11].
Note that (7.1) does not depend on � , as collisions have no impact on the dynamics
of the system. Using the sensing range � and interference range � we can formally
de�ne hidden nodes and exposed nodes. Consider a transmissi on from node v to
node w . Hidden nodes are then de�ned as nodes that are outside the se nsing range
of v , but within the interference range of w . Such nodes are not blocked by the
activity of node v , but their proximity to node w makes the hidden nodes harmful
to the transmission from v to w . Conversely, exposed nodes are those nodes that
are within the sensing range of v , but outside the interference range of w . Such
nodes are blocked by an ongoing transmission from v to w , despite the fact that they
will not cause this transmission to fail. Denote by H r (H l ) the set of hidden nodes
of transmissions from node 0 to node 1 (node -1): all nodes out side the sensing
range of 0, but within the interference range of the receivin g node 1 (node -1). By E r

(E l ) we denote the set of nodes to which this transmission is expo sed, so all nodes
within the sensing range of 0, but outside the interference r ange of the receiving
node. For completeness we let B r (B l ) denote the set of all remaining nodes that
block transmissions from node 0 to node 1 (node -1). This yiel ds:

H r ƒ
�

v 2 N
�� j v j � � ‚ 1; j v � 1j � �

	
; H l ƒ

�
v 2 N

�� j v j � � ‚ 1; j v ‚ 1j � �
	
;

E r ƒ
�

v 2 N
�� j v j � �; j v � 1j � � ‚ 1

	
; E l ƒ

�
v 2 N

�� j v j � �; j v ‚ 1j � � ‚ 1
	
;

B r ƒ
�

v 2 N
�� j v j � �; j v � 1j � �

	
; B l ƒ

�
v 2 N

�� j v j � �; j v ‚ 1j � �
	
:

So E r [B r ƒ E l [B l ƒ
�
v 2 N

�� j v j � �
	
. An example is given in Figure 7.1(a). Node 3

is a hidden node, as it interferes with the transmission from node 0 to node 1 ( � ƒ 2)
despite the carrier-sensing mechanism ( � ƒ 1). In Figure 7.1(b) node 0 is an exposed
node to the transmission from node 2 to node 3 because it would not interfere ( � ƒ 2)
with this transmission but is nevertheless silenced by the a ctivity of node 2 ( � ƒ 2).

We focus on node 0 (the node in the middle of the network) and in particular its
throughput � n „�; �; � … de�ned as the average number of successful transmissions
per unit of time.

Proposition 7.2. The throughput of node 0 is given by

� n „�; �; � … ƒ �
Zn � max f �;� � 1gZn � max f �;� ‚ 1g

Z2n ‚ 1
: (7.5)
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Then

� r ƒ �  
ZD1[ D2

ZN
:

The model on the line has the property that by conditioning on the activity of one
of the nodes, its state space can be decomposed, leading to tw o smaller instances of
the same model on the line. In particular, we know that ZD1 [ D2 ƒ ZD1 ZD2 (see [11,
Equation (15)]), so that

� r ƒ �  
ZD1 ZD2

ZN
ƒ �  

Zn � max f �;� � 1gZn � max f �;� ‚ 1g

Z2n ‚ 1
;

where Z i denotes the normalization constant of a network with i consecutive nodes
on a line. Similarly,

� l ƒ � „ 1 �  …
Zn � max f �;� � 1gZn � max f �;� ‚ 1g

Z2n ‚ 1
:

and (7.5) follows by adding � r and � l .

7.2 Main results

Our principal aim is to choose the sensing range � so that the throughput � n „�; �; � …
is maximized for a given � and � . De�ne

� �
n ƒ arg max

�
� n „�; �; � …:

Determining � �
n corresponds to quantifying and optimizing the tradeo� betw een pre-

venting collisions through interference (preventing hidd en nodes by setting � large)
and allowing harmless transmissions (preventing exposed n odes by setting � small).
We want to obtain structural insights in how to choose � �

n , and for this purpose the
expressions for Z i in (7.4) and � n „�; �; � … in (7.5) are too cumbersome. Therefore, we
investigate the throughput in the regime where the network b ecomes large ( n ! 1 ),
so that (7.5) simpli�es considerably.

The analytic results that we obtain for the in�nite network p rovide remarkably
sharp approximations for the �nite network; see Section 7.4 .1.

We start by presenting the limiting expression for � n „�; �; � … as the size of the
network grows large:

Proposition 7.3. Let � 0 denote the unique positive real root of (7.3). Then

�„�; �; � … ƒ lim
n!1

� n „�; �; � … ƒ �
� � � f „�…

0

„� ‚ 1…�0 � �
; (7.6)

where

f „�… ƒ

8
><

>:

2�; if 0 � � � � � 1;
� ‚ � ‚ 1; if � � 1 � � � � ‚ 1;
2�; if � � � ‚ 1:

(7.7)
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The proof of Theorem 7.1, see Appendix 7.A, follows from a det ailed study of
�„�; �; � … which involves implicit di�erentiation with respect to � (since � 0„�… is
de�ned implicitly).

Theorem 7.1 can be interpreted as follows (see Figure 7.2). W hen � is large, nodes
activate very quickly after �nishing their previous transm issions. When the system is
in a maximal independent set, and if collisions are not ruled out, an activating node
su�ers a collision almost surely. This explains why for � large, the optimal sensing
range is � ƒ � ‚ 1, preventing collisions completely. On the other hand, whe n � is
small, collisions become rare, as few nodes are active simul taneously. In this case,
the throughput is best served by increasing the spatial reus e, that is, decreasing the
sensing range (up to � � 1). This explains the result of Theorem 7.1 for � small.

�� min � max

� �

� � 1

� ‚ 1

Figure 7.2: The optimal sensing range � � as a function of � .

Note that Theorem 7.1 does not give the exact values of � min and � max . Instead,
we give below an estimate of the location and width of the thre shold interval.

Theorem 7.2. Let � ƒ �
� ‚ 1 with � ƒ „

p
5 � 1…=2.

(i) The threshold interval is bounded as

†� min ; � max ‡ � †�„ 1 ‚ �…� � 1 ; �„ 1 ‚ �…� ‚ 1‡:

(ii) The width of the threshold interval is asymptotically g iven as

� max � � min �
2e�

7 ‚ 4�

 
1

� ‚ 1

! 2

as � ! 1 :

Here we say that f „�… � g„�… if f „�…=g„�… ! 1 as � ! 1 . From Theorem 7.2(ii)
we see that the width of the threshold interval is O„� � 2…. Therefore, the interval
width decreases rapidly as a function of � , and we can speak of an almost immediate
transition from one regime ( � � ƒ � � 1) to the other ( � � ƒ � ‚ 1). As a by-product of
the proof of Theorem 7.2(ii) we obtain sharp approximations for � min and � max , see
(7.31)-(7.32):

�̂ min ƒ �̂ � „1 ‚ �̂ � …� � 1 ; �̂ max ƒ �̂ ‚ „1 ‚ �̂ ‚ …� ‚ 1 ; (7.8)

with �̂ � ƒ �=„� ‚ � � …and � � given as � in (7.32) with 
 ƒ � 1.
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7.2.1 Throughput limiting behavior

We now consider some limiting regimes for which we can make mo re explicit state-
ments about the throughput. From Theorem 7.2 we can already s ee that the threshold
interval moves in the direction of zero as � becomes large which implies that � � ƒ � ‚ 1
for small values of � . The next result shows that in the regime where � becomes large,
the maximum throughput tends to zero.

Proposition 7.5. Let � > 0 be �xed. As � ! 1 ,

max
�

�„�; �; � … ƒ
1

� ‚ 2

 

1 ‚ O

 
1

ln „� ‚ 1…

!!

:

For � � � ‚ 1 our model reduces to a model without collisions that was stu died ex-
tensively in [6, 11, 22, 71, 106], as well as Chapters 4-6. In p articular, one immediately
obtains from (7.6) the following result:

Corollary 7.1. Let � � � ‚ 1. Then

�„�; �; � … ƒ
� 0 � 1

„� ‚ 1…�0 � �
:

This result was also derived in [6, 22, 71, 106]. From Proposi tion 7.7 and the
proof of Proposition 7.5 it is seen that � 0 ! 1 as � ! 1 and � is �xed, and that
�„� 0 � 1…! 1 as � ! 1 and � is �xed. Thus the throughput is approximately 1

� ‚ 1
when either � or � is large. This can be understood as follows. For large � , the high
activity rate allows for con�gurations close to the maximum -size independent set: A
con�guration in which one out of every � ‚ 1 nodes in active. For � large, when a node
deactivates, a large number of neighboring nodes become eli gible for activation. The
time until the �rst such node activates goes to 0 when � increases.

Corollary 7.2. Let � � � . Then

lim
� !1

� n „�; �; � … ƒ 0: (7.9)

Proof. From (7.17) it follows that

� 0„� … ƒ �
1

1‚ � ‚ O „1…; � ! 1 : (7.10)

Substituting (7.10) into (7.6), and using that f „�… > 2� when � � � , yields

� n „�; �; � … ƒ
� „�

1
1‚ � ‚ O „1……� � f „�…

„� ‚ 1…„�
1

1‚ � ‚ O „1……� �
! 0; � ! 1 ;

which gives (7.9).

Figure 7.3 shows the throughput plotted against the activit y rate � for � ƒ 7 and
various values of � . When � � � , the throughput gradually drops to 0, whereas for
� � � ‚ 1, the throughput will eventually converge to the limit 1 =„� ‚ 1…. This con�rms
Corollaries 7.1 and 7.2.
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Figure 7.3: The throughput �„�; �; � … plotted against � for � ƒ 7 and various values
of � .

7.3 Normalization constant roots

In this section we study the roots � 0 ; : : : ; � � of (7.3) in more detail. In particular, we
derive exact in�nite-series expressions for the roots that are used in this chapter both
for numerical purposes (in Section 7.5) and to prove Corolla ry 7.2. These roots are
essential in Section 7.4.1, where the �nite and in�nite netw orks are compared. Our
main tool will be the Lagrange inversion theorem (see [16, p. 22]), and depending on the
value of � , this gives two di�erent in�nite-series expressions. Let „x…n ƒ � „x ‚ n…=� „x…
denote the Pochhammer symbol.

Proposition 7.6. For small � > 0,

� 0„� … ƒ 1 ‚
1X

l ƒ 1

„ � 1…l � 1 „�l… l � 1

l !
� l ; (7.11)

� j „� … ƒ
1X

l ƒ 1

„l=�…l � 1

l !
w l

j ; j ƒ 1; 2; : : : ; �; (7.12)

where w j ƒ � 1=� e2� {„j � 1=2…=� and { ƒ
p

� 1. The series expansions in (7.11) and (7.12)
converge for

0 � � �
� �

„� ‚ 1…� ‚ 1
ƒ : �„�…; (7.13)

and diverge otherwise.

Proof. We �rst consider the case j ƒ 0. Set � 0 ƒ � 0 � 1, so � 0 satis�es � 0„1‚ � 0…� ƒ � .
Hence for small values of j � j we have by Lagrange's inversion theorem

� 0 ƒ
1X

l ƒ 1

1
l !

 
d

d�

! l � 1
2

4
 

�
�„ 1 ‚ �…�

! l
3

5

� ƒ 0

� l ƒ
1X

l ƒ 1

„ � 1…l � 1 „�l… l � 1

l !
� l : (7.14)

Next we consider the case that j ƒ 1; : : : ; � . We now write (7.3) as

� � „1 � �…ƒ � � ; �„ 1 � �…1=� ƒ w j ;
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where
w j ƒ � 1=� e2� {„j � 1=2…=�:

Then we get for j w j j su�ciently small

� j ƒ
1X

l ƒ 1

1
l !

�
d

d�

� l � 1
" �

�
�„ 1 � �…1=�

� l
#

� ƒ 0

w l
j ƒ

1X

l ƒ 1

„l=�…l � 1

l !
w l

j : (7.15)

The radii of convergence of the series in (7.14) and (7.15) ar e easily obtained from
the asymptotics

� „x ‚ 1…ƒ xx‚ 1=2e� x
p

2�„ 1 ‚ O „x � 1……; x! 1 ; (7.16)

of the � -function, used to examine the Pochhammer quantities „x…n ƒ � „x ‚ n…=� „x…
and the factorials l ! ƒ � „l ‚ 1…that occur in both series. This yields the result that
both series converge when � � �„�… and diverge for � > �„�… . When � ƒ �„�… the
terms in either series are O„l � 3=2….

Proposition 7.7. For large � > 0,

� j „� … ƒ

 1X

l ƒ 1

�
� l

� ‚ 1

�

l � 1

l !
v � l

j

! � 1

; j ƒ 0; 1; : : : ; �; (7.17)

where v j ƒ � 1=„� ‚ 1…e2� {j=„� ‚ 1…. The series expansion in (7.17) converges for

� � �„�…;

and diverges otherwise, where �„�… is given in (7.13) .

Proof. We can treat the cases j ƒ 0 and j ƒ 1; : : : ; � simultaneously now. We write
(7.3) in the form

1
�

�
1 �

1
�

� � 1
� ‚ 1

ƒ
�

1
�

� 1
� ‚ 1

ƒ v � 1 ;

where we let

v � 1 ƒ v � 1
j ƒ

�
1
�

� 1
� ‚ 1

e� 2� { j
� ‚ 1 ; j ƒ 0; 1; : : : ; � (7.18)

with � � 1
� ‚ 1 > 0 in (7.18). We get for su�ciently large � from Lagrange's inversion

theorem (with u ƒ 1=� ) that

1
� j

ƒ
1X

l ƒ 1

1
l !

�
d

du

� l � 1
" �

u
u„ 1 � u…� 1=„� ‚ 1…

� l
#

uƒ 0

v � l
j ƒ

1X

l ƒ 1

 
� l

� ‚ 1

!

l � 1

v � l
j

l !
: (7.19)

The Pochhammer quantity „ � l
� ‚ 1 …l � 1 vanishes if and only if l ƒ 1; 2; : : : is a multiple

of � ‚ 1. The radius of convergence of the series in (7.19) is again d etermined by the
asymptotics of the � -function in (7.16). Here it must also be used that

� „ � J…ƒ
� 1

� „J ‚ 1…
�

sin �J
; J > 0:

It follows that the series in (7.19) is convergent when � � �„�… and divergent when
� < �„�… . When � ƒ �„�… the terms in the series are O„l � 3=2….
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7.A.2 Proof of Proposition 7.4

As introduced earlier,
� 0 ƒ � 0 � 1:

Then � 0 depends on � and � , we have � 0 > 0, and

� 0„1 ‚ � 0…� ƒ � : (7.20)

By implicit di�erentiation with respect to � , we get from (7.20) that

@�0
@�

ƒ
� � 0„1 ‚ � 0…ln „1 ‚ � 0…

1 ‚ � 0 ‚ �� 0
: (7.21)

In particular, both � 0 and � 0 decrease as a function of � > 0.

Consider the case that 0 � � � � � 1. Using � �
0 ƒ �

� 0 � 1 we get

�„�; �; � … ƒ � 2 � � 2�
0

„� 0 � 1…„„� ‚ 1…�0 � �…
ƒ � 2 � � 2�

0

� 0„1 ‚ � 0 ‚ �� 0…
:

Now � � 2�
0 increases as a function of � , and we will show that � 0„1‚ � 0 ‚ �� 0…decreases

in � > 0. We have from (7.21) that

@
@�

†� 0„1 ‚ � 0 ‚ �� 0…‡ƒ
@

@�
†�� 2

0 ‚ � 0 ‚ � 2
0 ‡

ƒ � 2
0 �

1 ‚ 2„1 ‚ �…� 0

1 ‚ � 0 ‚ �� 0
� 0„1 ‚ � 0…ln „1 ‚ � 0…� � 0„� 0 � „1 ‚ � 0…ln „1 ‚ � 0…… <0;

where the last inequality follows from x ln x > x � 1; x > 1. We conclude that �
increases as a function of � 2 „0; � � 1‡.

Next we consider the case that � � � ‚ 1. From � �
0 ƒ �

� 0 � 1 we get

�„�; �; � … ƒ �
� � �

0

„� ‚ 1…�0 � �
ƒ

� 0 � 1
„� ‚ 1…�0 � �

ƒ
� 0

1 ‚ � 0 ‚ �� 0
:

Now

@
@�

 
� 0

1 ‚ � 0 ‚ �� 0

!

ƒ

@�0
@� � � 2

0

„1 ‚ � 0 ‚ �� 0…2
< 0;

see (7.21), and so � decreases as a function of � � � ‚ 1. Since � depends continuously
on � > 0, the result follows.
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7.A.3 Proof of Theorem 7.1

The proof of the result as stated in Theorem 7.1 requires expa nding several other
results. We consider � 2 †� � 1; � ‚ 1‡ so that

�„�; �; � … ƒ �
� � � � 1

0

„� ‚ 1…�0 � �
ƒ �

„1 ‚ � 0…� � � 1

1 ‚ � 0 ‚ �� 0
:

From (7.21) it follows from a straightforward but somewhat l engthy computation that

@
@�

†�„�; �; � …‡ ƒ
� � � 0„1 ‚ � 0…� � � 1

„1 ‚ � 0 ‚ �� 0…2

�
1 � „� ‚ 2 ‚

�
1 ‚ � 0 ‚ �� 0

…ln „1 ‚ � 0…
�

: (7.22)

Let

F„�; � … ƒ „� ‚ 2 ‚
�

1 ‚ � 0 ‚ �� 0
…ln „1 ‚ � 0…: (7.23)

Then we have for � 2 †� � 1; � ‚ 1‡ that

F„�; � … > 1 ) � increases strictly in �; (7.24)

F„�; � … < 1 ) � decreases strictly in �: (7.25)

We analyze F„�; � … in some detail, especially for values of �; � such that F„�; � … ƒ 1.
We recall here that � 0 ƒ � 0„�; � … is a function of � and � as well.

We �x � > 0, and we compute

@
@�

F„�; � … ƒ

"
� ‚ 1
� 0 ‚ 1

‚
1 ‚ �

1 ‚ � 0 ‚ �� 0
�

�„ 1 ‚ �…ln „1 ‚ � 0…
„1 ‚ � 0 ‚ �� 0…2

#
@�0
@�

:

We get from (7.20) by implicit di�erentiation that

@�0
@�

ƒ
� 0„1 ‚ � 0…

� „ 1 ‚ � 0 ‚ �� 0…
> 0: (7.26)

Furthermore, it is seen from (7.20) that � 0„�; � … ! 0 as � # 0 and that � 0„�; � … ! 1 as
� ! 1 . Hence, � 0„�; � … increases from 0 to 1 as � increases from 0 to 1 . Moreover,

� ‚ 1
� 0 ‚ 1

> 0; 1 >
� ln „1 ‚ � 0…
1 ‚ � 0 ‚ �� 0

: (7.27)

It follows from (7.26) and (7.27) that @
@� F„�; � … > 0. Then, from (7.23) and from the

fact that � 0 increases from 0 to 1 as � increases from 0 to 1 , we have that F„�; � …
increases from 0 to 1 as � increases from 0 to 1 . Therefore, for any � > 0, there is
a unique � ƒ � „�… such that

F„�; � … ƒ F„�; � „�…… ƒ 1: (7.28)

We will next show that � „�… increases in � 2 †� � 1; � ‚ 1‡. By implicit di�erenti-
ation in (7.28), we have for � 2 †� � 1; � ‚ 1‡

0 ƒ
d

d�
†F„�; � „�……‡ ƒ F� „�; � „�…… ‚ � 0„�…F� „�; � „�……; (7.29)
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7.A.4 Proof of Theorem 7.2

We shall show below that

„� ‚ 2 ‚
� � 1

1 ‚ ��
…ln „1 ‚ �… < 1 < „� ‚ 2 ‚

� ‚ 1
1 ‚ „� ‚ 2…�

…ln „1 ‚ �… (7.30)

where � ƒ �=„� ‚ 1…. Assuming this, we recall that (for �xed � > 0) � 0 strictly
increases in � and vice versa. Set

� � ƒ �„ 1 ‚ �…� � 1 ;

then � ƒ � 0„� ƒ � � 1; � � …and we have that F„� � 1; � � … <1. So � � < � min since F
is increasing in � . Similarly, when

� ‚ ƒ �„ 1 ‚ �…� ‚ 1 ;

we have that � ƒ � 0„� ƒ � ‚ 1; � ‚ …and then from (7.30) that F„� ‚ 1; � ‚ … >1 and so
� ‚ > � max . Therefore,

� max � � min < � ‚ � � � ƒ �„ 1 ‚ �…� � 1 „„ 1 ‚ �…2 � 1…

ƒ 2

 

1 ‚
�

� ‚ 1

! � � 1  
�

� ‚ 1

!  

1 ‚
�

� ‚ 1

!

� 2e�

 
�

� ‚ 1

! 2

„1 ‚
�

� ‚ 1
…:

This proves Theorem 7.2(i). It remains to show (7.30). As to t he �rst inequality
in (7.30) we have

1 � „� ‚ 2 ‚
� � 1

1 ‚ ��
…ln „1 ‚ �… > 1 � „� ‚ 2 ‚

� � 1
1 ‚ ��

…�

>
1

1 ‚ ��
„1 � „� ‚ 1…� � „„� ‚ 1…�…2…ƒ 0

since 1 � � � � 2 ƒ 0 and „� ‚ 1…� ƒ � . As to the second inequality of (7.30) we have

1 � „� ‚ 2 ‚
� ‚ 1

1 ‚ „� ‚ 2…�
…ln „1 ‚ �… < 1 � „� ‚ 2 ‚

� ‚ 1
1 ‚ „� ‚ 2…�

…„� �
1
2

� 2…

ƒ
1

1 ‚ „� ‚ 2…�

�
1 � „� ‚ 1…� � „„� ‚ 1…�…2 � � 2 „� ‚ 3=2 �

1
2

„� ‚ 2…2 �…
�

:

As before

1 � „� ‚ 1…� � „„� ‚ 1…�…2 ƒ 0

and

� ‚
3
2

�
1
2

„� ‚ 2…2 � ƒ � ‚
3
2

�
„� ‚ 2…2

2„� ‚ 1…
� > 0; � � 0

since � ƒ 1
2 „

p
5 � 1… <3

4 (which is the minimum value of 2 „� ‚ 3=2…„� ‚ 1…„� ‚ 2…� 2

for � � 0…. This shows the second inequality in (7.30).
We next prove Theorem 7.2(ii), and for this we need the follow ing result:
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Proposition 7.9. With � ƒ � ‚ 
 where � 1 � 
 � 1,

� „�… ƒ �„ 1 ‚ �…� ‚ 
 ; (7.31)

where

� ƒ
�

� ‚ � ‚ O „� � 1…
; � ƒ

„5 ‚ 2
…� ‚ 1
2„2� ‚ 1…

; (7.32)

and the O holds uniformly in 
 2 †� 1; 1‡.

Proof. We have � „�… ƒ �„ 1 ‚ �…� where � is the unique solution of the equation

„� ‚ 2 ‚
�

1 ‚ „1 ‚ �…�
…ln „1 ‚ �…ƒ 1: (7.33)

We know from the proof of Theorem 7.2(i) that � ƒ O „� � 1…. Multiplying (7.33) by
1 ‚ „1 ‚ �…� and expanding

ln „1 ‚ �…ƒ � �
1
2

� 2 ‚ O „� 3…;

we get

„�� ‚
1
2

� ‚
3
2

� ‚ 1…�2 ‚ „� ‚ 1…� � 1 ƒ
1
2

„� ‚ 2…„� ‚ 1…�3 ‚ O „� � 2…:

Next let � 2 R be independent of � and use � ƒ � ‚ 
 to write

�� ‚
1
2

� ‚
3
2

� ‚ 1 ƒ „� ‚ �…2 ‚ „2 ‚ 
 � 2�…� ‚
3
2


 ‚ 1 � � 2 :

Together with � ‚ 1 ƒ � ‚ � ‚ 1 � � , we obtain

„� ‚ �…2 � 2 ‚ „� ‚ �…� � 1

ƒ
1
2

„� ‚ 2…„� ‚ 
 ‚ 1…�3 � „„ 2 ‚ 
 � 2�…� ‚
3
2


 ‚ 1 � � 2…�2 � „1 � �…� ‚ O „� � 2…:

(7.34)

We now take � such that the whole second term in of (7.34) is O„� � 2…. Using that
� ƒ �

� ‚ O „� � 2…, this leads to

1
2

� 3 � „2 ‚ 
 � 2�…� 2 � „1 � �…� ƒ 0;

and this yields the � in (7.32). The polynomial x2 ‚ x � 1 ƒ 0 has a zero of �rst order
at x ƒ � . Hence with � as in (7.32) we see from „� ‚ �…2 � 2 ‚ „� ‚ �…� � 1 ƒ O „� � 2…
that „� ‚ �…� ƒ � ‚ O „� � 2…. This gives the result.

Now we proceed to prove Theorem 7.2(ii). We use the result of P roposition 7.9.
Thus

� „� ‚ 
…ƒ �„ 1 ‚ �…� ‚ 
 ;

� ƒ
�

� ‚ � ‚ O „� � 1…
ƒ

�
� ‚ �

„1 ‚ O „� � 2……:
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By elementary considerations

� „� ‚ 
…ƒ
�

� ‚ �
„1 ‚

�
� ‚ �

…� ‚ 
 „1 ‚ O „� � 2……

ƒ
�

� ‚ �
exp†„� ‚ 
…„

�
� ‚ �

�
� 2

2„� ‚ �…
…‡„1 ‚ O „� � 2……

ƒ
� e�

� ‚ �
„1 ‚

„
 � �…� � 1
2 � 2

�
…„1 ‚ O „� � 2……:

Then letting 
 ƒ � 1 and

�„ 1…ƒ
7� ‚ 1

2„2� ‚ 1…
; �„ � 1…ƒ

3� ‚ 1
2„2� ‚ 1…

in accordance with Proposition 7.9, it follows that

� „� ‚ 1…� � „� � 1…ƒ
� e�

� 2

�
�„ � 1…� �„ 1…‚ „1 � �„ 1……�‚ „1 ‚ �„ � 1……�

�
‚ O „� � 3…

ƒ
� e�

� 2

2� 2

2� ‚ 1
‚ O „� � 3…:

Finally, it follows easily from � 2 ‚ � ƒ 1 that � 3„7 ‚ 4�…ƒ 2� ‚ 1.

7.A.5 Proof of Proposition 7.5

Since � > 0 is �xed, it follows from (see the proof of Theorem 7.2)

� max < � ‚ ƒ
�

� ‚ 1

 

1 ‚
�

� ‚ 1

! � ‚ 1

<
� e�

� ‚ 1

that � max < � when � is large enough. Then by Theorem 7.1

max � ƒ �„� ‚ 1…ƒ
� 0 � 1

„� ‚ 2…�0 � � � 1
ƒ

� 0

„� ‚ 2…�0 ‚ 1
ƒ

1
� ‚ 2

1

1 ‚ 1
„� ‚ 2…�0

;

where � 0 is the unique positive real � root of �„ 1 ‚ �…� ‚ 1 ƒ � . We shall show that

„� ‚ 2…�0 � ln � ; (7.35)

„� ‚ 2…�0 ƒ ln „� ‚ 1…‚ O „ ln ln „� ‚ 1……; �! 1 ; (7.36)

uniformly in � 2 †�; M‡ , where � > 0 and M > � are �xed. To show (7.35), we note
from � 0„1 ‚ � 0…� ‚ 1 ƒ � that

„� ‚ 1…�0 � „� ‚ 1…ln „1 ‚ � 0…ƒ ln � � ln � 0 : (7.37)

Next � ƒ � 0„1 ‚ � 0…� ‚ 1 � � � ‚ 2
0 , and so ln � 0 � 1

� ‚ 2 ln � . Therefore

„� ‚ 1…�0 � ln � �
1

� ‚ 2
ln � ƒ

� ‚ 1
� ‚ 2

ln � ;

and (7.35) follows. As to (7.36), we �rst observe from (7.21) that � 0 decreases in �
when � > 0 is �xed. Hence L ƒ lim � !1 � 0 exists, and it follows from � 0„1‚ � 0…� ‚ 1 ƒ �
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that L ƒ 0. Thus, � 0 decreases to 0 as � ! 1 . Then, from (7.37) we get that „� ‚ 1…�0
increases to 1 as � ! 1 . All this holds uniformly in � 2 †�; M‡ : Since � 0 increases
in � , the right-hand side of (7.37) is bounded below by ln � � ln � 0„� ƒ M…. Now
take � 0 > 0 such that „� ‚ 1…�0 � � when � � � 0 and � � � � M . Then from
� 0„1 ‚ � 0…� ‚ 1 ƒ � we have

„� ‚ 1…ln „1 ‚ � 0…ƒ ln � � ln � 0 � ln „� ‚ 1…�0 � ln � 0 � ln „� ‚ 1…

when � � � 0 and � � � � M . Hence, when � � � 0 ,

� 0 � exp

"
ln „� ‚ 1…

� ‚ 1

#

� 1 ƒ
ln „� ‚ 1…

� ‚ 1
‚ O

0

@
 

ln „� ‚ 1…
� ‚ 1

! 2
1

A ; (7.38)

where the O holds uniformly in � 2 †�; M‡ . Then, by (7.37),

„� ‚ 1…�0

� ln � � ln

 

exp

"
ln „� ‚ 1…

� ‚ 1

#

� 1

!

ƒ ln � � ln „
ln „� ‚ 1…

� ‚ 1

 

1 ‚ O

 
ln „� ‚ 1…

� ‚ 1

!!

ƒ ln „� ‚ 1…� ln ln „� ‚ 1…‚ ln � ‚ O

 
ln „� ‚ 1…

� ‚ 1

!

; (7.39)

with O holding uniformly in � 2 †�; M‡ and � � � 0 . From (7.38) and (7.39) we get (7.35)
uniformly in � 2 †�; M‡ .



8
Time-slotted CSMA

In this chapter we study the performance of a time-slotted CS MA algorithm, where
nodes are completely synchronized and transmissions last o ne time slot. The per-
formance measures of interest are the same as for the continu ous-time CSMA model:
throughput, fairness and stability. We �rst look at the thro ughput under saturation
assumptions, and compute the network-aggregate throughpu t as well as the per-node
throughputs. The latter can be used to study fairness, simil ar to Chapter 5 in the case
of continuous-time CSMA. We then relax the saturation assum ption and consider a
multi-hop network, in which packets are forwarded through t he network. We study
the stability of each node, and derive bounds on the end-to-e nd throughput.

The present model is di�erent from the continuous-time CSMA model introduced
in Section 1.3.2 and studied in Chapters 4-7, as these chapte rs assume that nodes
operate asynchronously and in continuous time. As in Chapte rs 5 and 7, we consider
a linear network. The multi-hop network discussed in Sectio ns 8.3 and 8.4 is similar
to the network presented in Section 5.5.

This chapter is structured as follows. In Section 8.1 we desc ribe slotted CSMA and
introduce the model of interest. Section 8.2 is devoted to th roughput and fairness in
the saturated case, while the unsaturated model is introduc ed and analyzed in Sec-
tion 8.3. In Section 8.4 we compare the performance of slotte d CSMA and continuous-
time CSMA, and Section 8.5 o�ers some concluding remarks.
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8.1 Model description

We consider a linear network of n nodes which can be either active or inactive, depend-
ing on whether they are transmitting or not. Nodes within dis tance � are prevented
from simultaneous activity. Similar to the CSMA model discu ssed in Chapters 4-7, the
state of the network can be written as

! ƒ „! 1 ; ! 2 ; : : : ; ! n …2 f 0; 1gn ;

where ! i ƒ 1 when node i is active. The set of feasible states 
 � f 0; 1gn is the same
as for the linear networks in Chapters 5 and 7, i.e., ! 2 f 0; 1gn is feasible if and only if
! i ! j ƒ 0 for all i; j such that 1 � j i � j j � � . We assume that each node is saturated,
i.e., it always has packets available for transmission. Thi s assumption is relaxed in
Section 8.3.

Time is slotted, and at the beginning of each time slot a feasi ble subset of nodes
is activated for the duration of that slot. We denote the sche dule of slot t by X„t…ƒ
„X 1 „t…; X2 „t…; : : : ; Xn „t……2 
 , with X i „t…ƒ 1 if node i is active in slot t and X i „t…ƒ 0
otherwise. The states X„t…are i.i.d. across time, and are generated as follows. At the
beginning of each time slot a random permutation A„t…ƒ „A 1 „t…; A2 „t…; : : : ; An „t……is
chosen uniformly from the set of all n ! permutations. Here A i „t…denotes the index
of node i in the permutation A„t…. Nodes then activate according to

X i „t…ƒ

(
1; if X j „t…ƒ 0 8 j : A j „t… < Ai „t…and j i � j j � �;
0; otherwise ;

(8.1)

starting from the node with the lowest index.

Thus nodes activate in the order prescribed by the permutati on A, but only if
no other nodes within distance � are already active. This procedure yields for each
time slot a feasible state ! 2 
 . A closed-form expression for the distribution of the
activity process P„X„t…ƒ ! …remains elusive, in contrast to the CSMA model (see (1.8)).
However, as we will see in this chapter, we do not require such distribution in order
to study the throughput.

The above procedure can be implemented in a distributed fash ion by synchroniz-
ing all nodes and partitioning each time slot in a contention period and a data period.
At the beginning of a contention period all nodes draw a unifo rmly distributed back-
o� time between 0 and the length of the contention period. A no de activates when
its back-o� timer runs out, but only if no nodes within distan ce � are already active.
Nodes then transmit for the entire duration of the data perio d. The duration of the
contention period has to be su�ciently large to allow the car rier-sensing mechanism
to function correctly. However, it can always be assumed to b e much smaller than the
length of the data period by scaling up the transmission dura tions. In the remainder
of this chapter we assume the length of the contention period to be zero, and we
arrive at the algorithm in (8.1).

Synchronization has long been part of the IEEE 802.11 protoc ol in the case of
small networks where all nodes can communicate directly wit h each other. The recent
802.11s (mesh) amendment also provides synchronization fo r large networks.
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8.2 The saturated regime

Recall that the throughput of a node is de�ned as the rate at wh ich successful trans-
missions are completed. For slotted CSMA, this is equivalen t to the fraction of slots a
node is active. Let us denote by Ti „n…the throughput of node i in an n-node network,
and by En ƒ

P n
i ƒ 1 Ti „n…the network-aggregate throughput.

Throughout this section we will restrict ourselves to the ca se � ƒ 1. The following
proposition presents the aggregate throughput in this case .

Proposition 8.1. The aggregate throughput in a network of n nodes is given by

En ƒ
nX

kƒ 1

„ � 1…k‚ 1 2k� 1

k!
„n � k ‚ 1…:

Proof. Conditioning on the position of the �rst node to activate, we may write

En ƒ 1 ‚
2
n
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1
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Ek� 2 ; (8.2)

with the convention that E0 ƒ E� 1 ƒ 0. The generating function

�„�… ƒ
1X

nƒ 1

En � n ; (8.3)

is well de�ned for any 0 � � < 1, since 0 � En � n .
In order to determine �„�… , we compute
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The system in (8.4) is a standard �rst-order di�erential equ ation, with initial condition
�„ 0…ƒ 0, so that
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completing the proof.
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We now turn to the individual throughputs in order to gain a mo re detailed un-
derstanding of the network. The following theorem gives a cl osed-form expression
for the per-node throughputs Ti „n…, i ƒ 1; 2; : : : ; n .

Theorem 8.1. For n � 1 and 1 � i � n ,
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8
>>>>><
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1 ‚

n� i
2P
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n� i � 1
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(8.5)

where
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and
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Proof. Conditioning on the �rst node to activate yields the followi ng recursive equa-
tion:
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With  i „�… ƒ
P 1

nƒ i Ti „n…� n , summing (8.8) over n gives the di�erential equation
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with initial condition  i „0…ƒ 0.
We shall show below that
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which leaves (8.5) to prove. To this end we shall �nd the Taylo r expansion for (8.10)
with respect to the powers of � . Let us start with the last term inside the brackets
in (8.10):
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and b i;m as in (8.7). Substituting this into (8.10) and using the Tayl or expansion for
the exponential function
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with d i;m de�ned in (8.6). The Ti „n…then readily follow from  i „�….
This proves Theorem 8.1. It remains to be shown that (8.10) ho lds. Introducing
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and �„ 0; s…ƒ 0. Solving this standard di�erential equation we obtain
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We now need to write the Taylor expansion for the latter expre ssion. Using
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Substituting (8.13) and (8.11) into (8.12) gives
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which yields (8.10).

Theorem 8.1 provides us with a closed-form but unwieldy expr ession for the indi-
vidual throughputs. In case the network size grows to in�nit y we can obtain a more
elegant expression for the throughputs of nodes 1 and 2.

Corollary 8.1. As n ! 1 ,

T1„n…! 1 � e� 1 and T2 „n…! e� 1 :

8.3 Stability and end-to-end throughput

In this section we relax the assumption that all nodes are sat urated and instead con-
sider a multi-hop network where certain bu�ers may occasion ally empty. Speci�cally,
node 1 has an in�nite supply of packets available which are fo rwarded through the
network along nodes 2 ; 3; : : : ; n . Once transmitted by node n, packets leave the net-
work. Let us denote by Q i „t…the backlog of node i at time t . Nodes compete for
access to the medium as before, with the modi�cation that nod es can only activate
when they have packets available for transmission.

We consider a chain of n ƒ 2� ‚ 1 nodes, � � 1, and we denote by � i the throughput
of node i . Note that

� 1 � � 2 � � � � � � n ; (8.14)

with equality if all nodes are stable. We are interested in th e end-to-end throughput
� n . In contrast to the saturated case discussed in Section 8.2, the queue lengths play
a crucial role, and no explicit expression for the throughpu ts is known. We shall
provide bounds on the end-to-end throughput. To do so we requ ire the following
stability results.

Lemma 8.1. For slotted CSMA with n ƒ 2� ‚ 1, � � 1, we have

(i) Nodes 1; 2; : : : ; � ‚ 1 are unstable;

(ii) Nodes � ‚ 2; � ‚ 3; : : : ; n are stable.

Proof. Node 1 is saturated by de�nition, and is thus unstable. Let i 2 f 2; 3; : : : ; � ‚ 1g
and assume that node i � 1 is unstable. We will show that

� i � 1 > � i ; i ƒ 2; 3; : : : ; � ‚ 1; (8.15)

and conclude by induction that statement (i) holds. In order to demonstrate that (8.15)
holds, it is su�cient to show that

P„X i � 1„t…ƒ 1… >P„X i „t…ƒ 1…; (8.16)

and that the di�erence between these two probabilities is bo unded away from zero.
To verify (8.16), note that for all t � T for some T < 1 , node i always has a

packet for transmission since it is unstable. We let t su�ciently large and denote by
A � „t…ƒ arg min i :Q i „t…� 1 A i „t…the �rst node to activate in slot t , with the convention
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of fairness. The latter is shown to lead to higher end-to-end throughput for slotted
CSMA.

These results suggest an interesting connection between th e behavior of the sat-
urated network and the throughput in the unsaturated case. A similar phenomenon
was observed in Section 5.5, where it is argued that the back- o� rates that provide
equal throughputs (for continuous-time CSMA) also perform remarkably well in a
multi-hop setting. We conjecture that the minimum and maxim um throughput in
the saturated case provide lower and upper bounds for the end -to-end throughput in
the multi-hop case, respectively. Consequently, in case we have strict fairness (equal
throughputs) in the saturated regime, a multi-hop �ow that c rosses all nodes could
attain the saturation throughput.

Appendix

8.A Remaining proofs

8.A.1 Proof of Theorem 8.2

By Lemma 8.1 we have that nodes � ‚ 2; :::; 2� ‚ 1 are stable, so time may be divided
into "cycles" that start and end with nodes � ‚ 2; : : : ; 2� ‚ 1 being empty. Since nodes
1; :::; � ‚ 1 are unstable, the number of packets R leaving the network during a cycle
and the length of a cycle U are identically distributed across cycles. Thus, by renewa l
reward theory [5] we can express the throughput of our system as the total expected
number of packets leaving the system during a cycle divided b y the total expected
duration of a cycle:

� n ƒ
E†R‡
E†U‡

: (8.17)

A typical cycle will be as follows:

1) nodes 1 ; : : : ; � jointly �nish T0 transmissions;

2) node � ‚ 1 transmits a single packet.

Let � denote the number of times nodes � ‚ 2; : : : ; 2� ‚ 1 relinquish access, until all
these nodes are empty again, and the cycle ends. Each of these � events initiates a
"sub-cycle" as follows:

for i ƒ 1; : : : ; � :

3) nodes L i ; : : : ; � ‚ 1 jointly �nish Ti transmissions, N i of which by � ‚ 1;

4) nodes � ‚ 2; : : : ; 2� ‚ 1 jointly �nish M i transmissions. At the end of this activity
period, node 2 � ‚ 1 is empty.

Here L i is such that � ‚ L i is the rightmost non-empty node at the time when nodes
� ‚ 2; :::; 2� ‚ 1 lost access to the channel.

By combining the di�erent components of a cycle we obtain the cycle duration
and packet departures as follows

R ƒ 1 ‚ N1 ‚ � � � ‚ N � U ƒ T0 ‚ 1 ‚ „T 1 ‚ M1…‚ � � � ‚ „T � ‚ M � …; (8.18)
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Note that nodes � ‚ 2; : : : ; 2� ‚ 1 experience a joint workload of � for each packet
transmitted by node � ‚ 1, so

M1 ‚ : : : ; M � ƒ �„ 1 ‚ N1 ‚ : : : ‚ N � …: (8.19)

Now, by substituting (8.18) and (8.19) into (8.17) we obtain the following expression
for the throughput:

� n ƒ
E†1 ‚ N1 ‚ : : : ; N � ‡

E†T0 ‚ 1 ‚ „T 1 ‚ M1…‚ : : : ‚ „T � ‚ M � …‡

ƒ
1 ‚ E†N1 ‚ : : : ; N � ‡

2� ‚ 1 ‚ E†T1 ‚ : : : ‚ T� ‚ �„N 1 ‚ : : : ‚ N � …‡
: (8.20)

The exact state of the system right before the �rst sub-cycle is known, we have

T0 ‚ 1 � geo

 
1

� ‚ 1

!

; E†T0‡ ƒ �: (8.21)

We know that L1 ƒ 2 and 2 � L i � � , i ƒ 1; : : : ; � . We say there are a total of H i

non-empty nodes to the right from � ‚ 1, 1 � H i � � � 1. So only nodes L i ; : : : ; � ‚ 1
can win the next competition without a node on the right gaini ng access. From this
we know

Ti ‚ 1 � geo„
H i ‚ L i � 1
� � L i ‚ 2

…; Ni ‚ 1 � geo„
1

� � L i ‚ 2
…:

Using this, it can be seen that

E†Ti ‡ ƒ „� � L i ‚ 2…E†Ni ‡ ƒ
� ‚ L i ‚ 2
H i ‚ L i � 1

: (8.22)

Equation (8.22) implies, in particular, that

„� ‚ 1…E†Ni ‡ � E†Ti ‡ ƒ
L i � 1

M i ‚ L i � 1
� 1: (8.23)

From stability of nodes � ‚ 2; : : : ; 2� ‚ 1 we know � < 1 . Moreover, it holds that

� � 1 ‚ N1 ‚ : : : ‚ N � : (8.24)

This is true because a sub-cycle always ends by a successful t ransmission of node
2� ‚ 1. This implies that the number of sub-cycles may not be large r than the number
of packets leaving the system during the entire cycle.

Substituting this into (8.20) yields the lower bound

� n ƒ
1 ‚ E†N1 ‚ : : : ‚ N � ‡

2� ‚ 1 ‚ E†T1 ‚ : : : ‚ T� ‚ �„N 1 ‚ : : : ‚ N � …‡

ƒ
1 ‚ E†N1 ‚ : : : ‚ N � ‡

2� ‚ 1 ‚ E†„� � L1 ‚ 2…N1 ‚ : : : ‚ „� � L � ‚ 2…N� ‡ ‚ � E†N1 ‚ : : : ‚ N � ‡

�
1 ‚ E†N1 ‚ : : : ‚ N � ‡

2� ‚ 1 ‚ „2� ‚ 1…E†N1 ‚ : : : ‚ N � ‡
ƒ

1
2� ‚ 1

;

completing the proof.
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8.A.2 Proof of Theorem 8.3

A proof of this theorem may be given following the steps of the proof of Theorem 8.2.
Indeed, similar to the slotted case, we see that nodes � ‚ 2; :::; 2� ‚ 1 are stable and
nodes 1 ; :::; � ‚ 1 are unstable, by Lemma 8.2. Thus, the time may be divided int o
"cycles" that start and end with nodes � ‚ 2; : : : ; 2� ‚ 1 being empty, and again the
throughput of our system is equal to the total expected numbe r of packets leaving
the system during a cycle divided by the total expected durat ion of a cycle.

A typical cycle is constructed in exactly the same way as in th e time-slotted case,
with the addition that a cycle is extended with a residual tra nsmission time of node
2� ‚ 1. Now, instead of (8.20) in the proof of Theorem 8.2, we have

� �
n ƒ

1 ‚ E†N1 ‚ : : : ; N � ‡
2� ‚ 1 ‚ E†T1 ‚ : : : ‚ T� ‚ �„N 1 ‚ : : : ‚ N � …‚ �‡

: (8.25)

Note that in the continuous-time case the lengths of the vari ous parts of a typical
cycle are no longer geometrically distributed, but their ex pectations are exactly the
same as in the time-slotted case. Hence, (8.22)-(8.24) stil l hold. Taking this into
account, we substitute (8.22) and (8.24) into (8.25) to obta in a lower bound:

� �
n ƒ

1 ‚ E†N1 ‚ : : : ‚ N � ‡
2� ‚ 1 ‚ E†T1 ‚ : : : ‚ T� ‚ �„N 1 ‚ : : : ‚ N � …‚ �‡

�
1 ‚ E†N1 ‚ : : : ‚ N � ‡

2� ‚ 2 ‚ „2� ‚ 1…E†N1 ‚ : : : ‚ N � ‡

� lim
y ! 0

1 ‚ y
2� ‚ 2 ‚ „2� ‚ 1…y

ƒ
1

2� ‚ 2
;

By (8.23) we have that

� �
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2� ‚ 1 ‚ E†T1 ‚ : : : ‚ T� ‚ �„N 1 ‚ : : : ‚ N � …‚ �‡

ƒ
1 ‚ E†N1 ‚ : : : ‚ N � ‡

2� ‚ 1 ‚ E†T1 � „� ‚ 1…N1 ‚ : : : ‚ T� � „� ‚ 1…N� ‚ „2� ‚ 1…„N1 ‚ : : : ‚ N � …‚ �‡

�
1 ‚ E†N1 ‚ : : : ‚ N � ‡

„2� ‚ 1…„1 ‚ E†N1 ‚ : : : ‚ N � ‡…
ƒ

1
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;

which is the upper bound.
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Summary

Next-generation wireless networks will likely evolve from cellular and small-scale
home networks to large, inter-connected networks that form the backbone for low-
cost internet access. A de�ning characteristic of wireless networks is that all nodes
share the same medium for their transmissions, and conseque ntly, simultaneous
transmissions from nearby nodes will interfere with each ot her. The resulting perfor-
mance issues can be mitigated by regulating node activity.

Various mechanisms exist for regulating node access to the w ireless medium,
which can be categorized into scheduled-access and random-access algorithms. The
former involve a centralized entity that controls the behav ior of all nodes, while
random-access constitutes a class of randomized, distribu ted algorithms. Random-
access algorithms are popular for their simplicity, and the ir distributed nature makes
them well-suited for large, dynamic wireless networks. Sch eduled-access networks
generally have better performance since the presence of an o mniscient controller al-
lows for coordination between nodes, but entail higher impl ementation complexity.

One well-known algorithm for centralized access is MaxWeig ht scheduling, which
is popular for its ability to achieve maximum stability and t hroughput optimality in a
wide variety of scenarios. The distinguishing characteris tic of MaxWeight policies is
that these require solving the maximum weighted independen t set problem of the un-
derlying interference graph. The maximum-stability guara ntees however rely on the
premise that the system consists of a �xed set of �ows, while i n reality the collection
of active �ows dynamically varies. In Chapters 2 and 3 we demo nstrate that in the
presence of �ow-level dynamics the algorithm may no longer b e throughput-optimal,
and we identify two causes for the instability: (i) failure t o fully exploit rate variations;
and (ii) spatial ine�ciency.

In Chapter 2 we consider the MaxWeight scheduling algorithm in a single down-
link scenario with varying transmission rates. We identify a simple necessary and
su�cient condition for stability, and show that MaxWeight p olicies may fail to pro-
vide maximum stability. The intuitive explanation is that t hese policies tend to favor
�ows with large backlogs, so that the rate variations of �ows with smaller backlogs
are not fully exploited.

The second cause for instability is studied in Chapter 3, whe re we consider a spatial
setting in which �ows arrive at random in some �nite space, an d multiple �ows may be
scheduled simultaneously, subject to certain interferenc e constraints. The MaxWeight
scheduler tends to serve �ows with large backlogs, even when the resulting spatial
reuse is not particularly e�cient. We show that the inabilit y of MaxWeight policies to
exploit maximum spatial reuse patterns may lead to instabil ity.
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