Control of shape memory alloy actuators

van der Wijst, M.W.M.; Moens, M.T.R.; Schreurs, P.J.G.; Veldpaus, F.E.; Meijer, H.E.H.

Published: 01/01/1996

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 15. Dec. 2018
Introduction

Shape Memory Alloys (SMAs) are metal alloys that exhibit the Shape Memory Effect: an SMA deformed at a low temperature (1 → 2), recovers its original shape upon heating (2 → 3). This process is due to a change in crystal structure from austenite to martensite and vice versa. It is repeatable for millions of times.

Objective

Application of SMA wires as actuators for mechanical systems. This implies the development of a control strategy, using a model of:

- the 1-D constitutive behaviour of SMA wires
- the heating and cooling behaviour of SMA wires (energy balance)
- the mechanics of the system

Constitutive behaviour

Characteristics:

- heating ⇒ wire shortens
- cooling ⇒ wire elongates
- hysteresis: shrinkage starts at higher temperature than elongation
- hysteresis loop shifts to higher temperatures when a larger force is applied

Experimental setup

Two-link robot arm driven by two pairs of SMA wires (Nickel-Titanium, cross-section: 0.1 mm x 0.6 mm)

Problem definition

Let arm tip \(\mathbf{r} = [r_x, r_y]^T \) follow a desired trajectory \(\mathbf{r}_d \). Since \(\mathbf{r} \) cannot be measured directly, the control task is defined as: let the link angles \(\varphi = [\varphi_1, \varphi_2]^T \) follow a desired trajectory \(\varphi_d = [\varphi_{1d}, \varphi_{2d}]^T = f^{-1}(\mathbf{r}_d) \).

Control strategy

Adjust the temperature of the SMA wires by adapting the electric current \(u \) through the wires.

Experimental results

Two control laws were investigated:

1. \(u = u_{fb} \)
2. \(u = u_{fb} + u_{ol} \)

with:

- \(u_{fb} = \) PID feedback controller
 \[u_{fb} = P(\varphi - \varphi_d) + I \int (\varphi - \varphi_d) dt + D(\dot{\varphi} - \dot{\varphi}_d) \]
- \(u_{ol} = \) open loop current based on a (inverse) model of the entire system

Conclusions

- Shape Memory Alloys can be applied successfully as actuators in mechanical systems
- Tracking performance can be improved with a model-based control law