Prediction of yield stress development using structural relaxation

Citation for published version (APA):

Document status and date:
Published: 01/01/2005

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Introduction

In previous work [1] we showed that by extrapolating the results of the development of yield stress due to annealing treatments on a glassy polymer below the glass transition temperature, T_g, towards the development of properties during processing, we were able to predict the resulting distribution of yield stresses. In this previous approach, however, T_g was used as an input parameter. In the approach presented here [2], structural relaxation kinetics are used to describe the relaxation kinetics of the solidifying glass, and thus describing T_g.

TNM-Model

Structural relaxation has already been extensively used to describe a number of relaxation phenomena observed in polymers, e.g. volume and enthalpy. In figure 1 (left) relaxation of a property P (volume) with temperature is shown. Figure 1 (right) shows how this can be translated to the relaxation of the zero-viscosity.

\[T_f(T, \xi) = T - \int_0^\xi M_\nu(\xi - \xi') \frac{dT}{d\xi} d\xi' \]

\[M_\nu(\xi) = \exp \left(- \left(\frac{\xi}{T_\nu} \right)^3 \right) \]

\[\gamma_f(T, T_f) = A \exp \left(\frac{x \Delta H}{RT} + \frac{(1-x) \Delta H}{RT_f} \right) \]

\[\log_{10}(\gamma_f(T, \xi)) = \log_{10} \left(\frac{A_0 \xi^2 V^3}{R V^3} \right) + \log_{10}(T) + \frac{1}{2 \cdot 303} \left(\frac{\Delta H}{R} \right) \left(\frac{1}{T} - \frac{1}{T_f(\xi)} \right) \]

\[\sigma = \sigma_t + \sigma_r \]

\[\sigma_t = 3 \alpha \sigma_0 \quad ; \quad \sigma_r = G_0 \left(\lambda^2 - \lambda_{\infty}^{-1} \right) \]

Experimental

From a commercial grade of polycarbonate, Lexan 141R, injection molded samples were made. Mold temperatures were varied from $30^\circ C$ to $130^\circ C$. Subsequently tensile bars were machined from the injection molded samples to determine the resulting yield stress, see figure 2 below.

![Figure 2 Injection molded part and tensile bars made thereof](image)

Results

The results show that both annealing close to T_g, and prediction of the yield stress distribution as it develops due to processing conditions can be described accurately by our approach.

![Figure 3 Annealing close to T_g: symbols are experimental results, lines are model predictions (left); development of zero viscosity versus temperature, T_f, is a reference temperature, here equal to T_g (right)](image)

Conclusions

With the use of structural relaxation kinetics yield stresses can be predicted from processing conditions. This makes it possible to design a product for performance without ever doing a single experiment.

References:

T.A.P.Engels, L.E.Govaert, G.W.M.Peters and H.E.H.Meijer

PO Box 513, 5600 MB Eindhoven, the Netherlands