Periodic structures in 3D mixing flows

Published: 01/01/1996

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 14. Dec. 2018
Introduction

The laminar mixing process can be improved by introducing chaos in the flow. Time-periodic flows produce chaotic trajectories and the chaos is determined by periodic points. Figure 1 represents the flow geometry and the front and back wall induce the time-periodic motion.

Objectives

- study chaotic mixing using periodic point analysis
- develop numerical tools to analyze mixing

Chaotic Mixing

Chaos in the flow is determined by the periodic points. Periodic points return to their original position after one period T and are classified into two groups:

- elliptic: center of non-mixing regions (islands)
- hyperbolic: center of stretching and folding

Numerical Techniques

- Time discretization: Pressure correction method
- Space discretization: Spectral element method

Mixing Analysis

In symmetrical flows, periodic lines cross the plane of symmetry $x = 0$ at the times $t_1 = T/4$ and $t_2 = 3T/4$. This plane is tracked from t_1 and t_2.

Conclusions

Periodic structures, which consist of lines, are found and classified in 3D cavity flows.