The frequency scale of intonation

Citation for published version (APA):

DOI:
10.1121/1.2027474
10.1121/1.398352

Document status and date:
Published: 01/01/1989

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 30. Apr. 2021
Previous literature has reported theory of phase decomposition used the complex cepstrum to extract the all-pass phase from the total phase of acoustical space transfer functions. The all-pass phase is associated with the reverberant properties of two- and three-dimensional spaces. The dereverberation of acoustical signals in such spaces can be accomplished by this separation. This paper describes the results of some recent experimental studies of sound propagation in one-, two-, and three-dimensional spaces. A comparison of the expected and observed components of reverberant and propagation phase, with the results from these experiments, is presented.

Sixteen listeners judged the similarity of all possible pairs of 18 pathological voices and, in a separate session, 18 normal voices. Individual differences, multidimensional scaling was used to derive a separate perceptual space for each listener/voice set combination. These scaling solutions accounted for an average of 83% of the variance in similarity ratings for pathological voices, and 77% for normal voices. Listeners varied substantially in the acoustic characteristics they attended to when judging vocal similarity. Although all perceptual spaces included an F0 dimension, no other parameter was used by more than half the listeners, for either voice set. Listeners who shared common perceptual dimensions often differed in the way they used the same acoustic information. For example, F0 was used as a continuous dimension by some listeners, and to sort voices into groups (high- and low-pitched groups, pathological and normal groups, etc.) by others; combinations of these strategies also occurred. Implications of these results for models of voice quality perception will be discussed.

It has been reported that the primary cue for the HL tonal perception in Japanese is not the actual F0 peak location but rather a falling F0 contour. The F0 fall may be significantly delayed, resulting in the F0 peak occurring at various locations, while maintaining the overall F0 contour (level-rise-peak-slight fall). The stimuli were presented to native speakers of Japanese to determine the boundary between the categorical perception of LHH and LH. The results show that the LH sequence is more constrained than the HL in terms of temporal alignment of F0 change and the syllable boundary.