Numerical simulation of 3D foam dynamics

Citation for published version (APA):

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Apr. 2021
Numerical Simulation of 3D Foam Dynamics

Ivan B. Bazhlekov, Frans N. van de Vosse and Han E. H. Meijer

Eindhoven University of Technology, Department of Mechanical Engineering

Introduction

Due to their highly structured geometry (liquid films bounded by plateau borders and junctions, see figure 1) and mechanics at film level, liquid foams show rich rheological behavior and have wide practical applications. This is mainly due to the presence of a relatively large interfacial area and, correspondingly, thin liquid films. Most of the existing theoretical results, however, are limited to dynamics of 2D wet foams or 3D dry-film foams, see [1].

Objective

To develop a computational method for a 3D simulation of the dynamics of wet polydisperse foams.

Mathematical method

The mathematical model is based on the assumptions that inertia is negligible and interfaces are pure (no surfactant). The model consists of:

- Stokes equations in all liquid regions;
- continuity of the velocity across the interfaces;
- normal stress balance on the interfaces which take into account the capillary as well as disjoining pressure;
- the evolution is governed by the kinematic condition;
- simple shear flow is considered as an example of external flow, see figure 2.

Numerical method

The numerical method is based on a boundary integral formulation [2] and is extended with the following features (see also [3]):

- non-singular contour integration of the singular layer potentials which improves the accuracy;
- multiple step integration which improves the numerical stability and increases the performance;
- high order approximation of the interfaces which allows simulation of films with thickness of order 10^{-3};
- dynamic mesh-size optimization, see figure 3.

Results

Subjected to the shear flow, the foam-drop undergoes significant topological changes: The inner drops move inside the whole drop, see figure 4, which is related to topological transitions between films, plateau borders and junctions. Such complex dynamics of the foams determines their elastic-plastic behavior.

Conclusions

A boundary integral method is developed for the simulation of the dynamics of wet polydisperse foam. It can resolve interface-to-interface distances of a few orders of magnitude smaller than the drop size. An extension of the method to the case of insoluble surfactants will be a topic of future work.

References:

PO Box 513, 5600 MB Eindhoven, the Netherlands