Structure and properties of flow induced orientation in semi-crystalline polymers
Schrauwen, B.A.G.; Govaert, L.E.; Meijer, H.E.H.

Published: 01/01/2001

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 12. Dec. 2018
Structure and Properties of Flow Induced Orientation in Semi-Crystalline Polymers

Bernard A.G. Schrauwen, Leon E. Govaert and Han E.H. Meijer
Eindhoven University of Technology, Department of Mechanical Engineering

Introduction
The toughness of semi-crystalline polymers can be improved by the addition of particulate fillers (e.g., CaCO₃ in HDPE). Also in unfilled semi-crystalline polymers toughness was found to increase in thin injection moulded samples. Since for both systems the behaviour was found to be anisotropic and process dependent, the effect of flow induced crystallization should be taken into account.

Properties of unfilled systems
A row structure is also known to exist over the complete thickness of extrudated films of HDPE or PP.

Structure in unfilled systems
Microscopic orientation

- Size of the oriented skin layer is dependent on the applied injection conditions (e.g., \(V_{inj} \) & \(T_{inj} \))
- Maximum oriented layer thickness \(\approx 500 \mu m \).
- Shish-kebab structure with twisted kebab (row structure).

Objective: Is there a relation between the flow induced structure and the properties of semi-crystalline polymers.

Structure in 15% CaCO₃ filled HDPE

- Increasing amount of flow induced crystalline orientation increases impact toughness.
- Row oriented structure has strong anisotropic behaviour; localization perpendicular to flow direction and homogeneous deformation in flow direction.
- Flow induced orientation of crystals is probably the main concept in the mechanical behaviour of particle-modified semi-crystalline polymers.

Conclusions

References: