Angle-restricted Steiner arborescences for flow map layout

Citation for published version (APA):

DOI:
10.1007/s00453-013-9867-z

Document status and date:
Published: 01/01/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Angle-Restricted Steiner Arborescences for Flow Map Layout

Kevin Buchin · Bettina Speckmann · Kevin Verbeek

Received: 18 July 2012 / Accepted: 31 December 2013 / Published online: 23 January 2014
© Springer Science+Business Media New York 2014

Abstract We introduce a new variant of the geometric Steiner arborescence problem, motivated by the layout of flow maps. Flow maps show the movement of objects between places. They reduce visual clutter by bundling curves smoothly and avoiding self-intersections. To capture these properties, our angle-restricted Steiner arborescences, or flux trees, connect several targets to a source with a tree of minimal length whose arcs obey a certain restriction on the angle they form with the source.

We study the properties of optimal flux trees and show that they are crossing-free and consist of logarithmic spirals and straight lines. Flux trees have the shallow-light property. We show that computing optimal flux trees is NP-hard. Hence we consider a variant of flux trees which uses only logarithmic spirals. Spiral trees approximate flux trees within a factor depending on the angle restriction. Computing optimal spiral trees remains NP-hard, but we present an efficient 2-approximation, which can be extended to avoid “positive monotone” obstacles.

Keywords Steiner arborescences · Flow maps · Computational geometry · Automated cartography

A preliminary version of this paper appeared in the Proceedings of the 22nd International Symposium on Algorithms and Computation (ISAAC), pp. 250–259, Lecture Notes in Computer Science 7074, 2011. B. Speckmann and K. Verbeek were supported by the Netherlands Organization for Scientific Research (NWO) under project no. 639.022.707.

K. Buchin · B. Speckmann (✉)
Department of Mathematics and Computer Science, TU Eindhoven, Eindhoven, The Netherlands
e-mail: speckman@win.tue.nl

K. Buchin
e-mail: k.a.buchin@tue.nl

K. Verbeek
Department of Computer Science, University of California, Santa Barbara, USA
e-mail: kverbeek@cs.ucsb.edu
1 Introduction

Flow maps are a method used by cartographers to visualize the movement of objects between places [9, 19]. One or more sources are connected to several targets by curves whose thickness corresponds to the amount of flow between a source and a target. Good flow maps share some common properties. They reduce visual clutter by merging (bundling) curves as smoothly and frequently as possible. Furthermore, they strive to avoid crossings between curves. Flow trees, that is, single-source flows, are drawn entirely without crossings. Flow maps that depict trade often route curves along actual shipping routes. In addition, flow maps try to avoid covering important map features with flows to aid recognizability. Most flow maps are still drawn by hand and none of the existing algorithms (that use edge bundling), can guarantee to produce crossing-free flows.

In this paper we introduce a new variant of geometric minimal Steiner arborescences, which captures the essential structure of flow trees and serves as a “skeleton” upon which to build high-quality flow trees. Our input consists of a point r, the root (source), and n points t_1, \ldots, t_n, the terminals (targets). Visually appealing flow trees merge quickly (when seen from the leaves), but smoothly. A geometric minimal Steiner arborescence on our input would result in the shortest possible tree, which naturally merges quickly. A Steiner arborescence for a given root and a set of terminals is a rooted directed Steiner tree, which contains all terminals and where all edges are directed away from the root. Without additional restrictions on the edge directions (as in the rectilinear case or in the variant proposed in this paper), a geometric Steiner arborescence is simply a geometric Steiner tree with directed edges. However, Steiner arborescences have angles of $2\pi/3$ at every internal node and hence are quite far removed from the smooth appearance of hand-drawn flow maps. Our goal is hence to connect the terminals to the root with a Steiner tree of minimal length whose edges obey a certain restriction on the angle they form with the root. Note that we will refer to the edges of the trees as arcs in the remainder of the paper since they are not necessarily straight.

Specifically, we use a restricting angle $\alpha < \pi/2$ to control the direction of the arcs of a Steiner arborescence T. Consider a point p on an arc e (see Fig. 1). Let γ be the angle between the vector from p to the root r and the tangent vector of e at p. We require that $\gamma \leq \alpha$ for all points p on T. We refer to a Steiner arborescence that obeys this angle restriction as angle-restricted Steiner arborescence, or simply flux tree. Here and in the remainder of the paper it is convenient to direct flux trees from the terminals to the root. Also, to simplify descriptions, we often identify the nodes of a flux tree T with their locations in the plane.

In the context of flow maps it is important that flux trees can avoid obstacles, which model important features of the underlying geographic map. Furthermore,
it is undesirable that terminals become internal nodes of a flux tree. We can ensure that our trees never pass directly through terminals by placing a small triangular obstacle just behind each terminal (as seen from the root). Hence our input also includes a set of m obstacles B_1, \ldots, B_m. We denote the total complexity (number of vertices) of all obstacles by M. In the presence of obstacles our goal is to find the shortest flux tree T that is crossing-free and avoids the obstacles.

The edges of flux trees are by definition “thin”, but their topology and general structure are very suitable for flow trees. In a companion paper [7] we describe an algorithm that thickens and smoothes a given flux tree while avoiding obstacles. The algorithm minimizes a weighted sum of cost functions that smoothen the tree, straiten thick branches, approximately maintains angles and forces arcs to avoid obstacles and leaves. It preserves the topology of the flux tree, that is, the resulting tree has the same leaf order and same internal structure as the flux tree and also passes obstacles on the same side. Figure 2 shows two examples of the maps computed with our algorithm, further examples and a detailed discussion of our maps can be found in [7].

Related Work One of the first systems for the automated creation of flow maps was developed by Tobler in the 1980s [1, 20]. His system does not use edge bundling and hence the resulting maps suffer from visual clutter. In 2005 Phan et al. [14] presented an algorithm, based on hierarchical clustering of the terminals, which creates flow trees with bundled edges. This algorithm uses an iterative ad-hoc method to route edges and is often unable to avoid crossings. A second effect of this method is that flows are often routed along counterintuitive routes. The quality of the maps can be improved by moving the terminals, but this is undesirable as well as confusing in an actual geographic map [19]. Recent papers from the information visualization community explore alternative ways to visualize flows, by using multi-view displays [10], animations over time [4], or mapping techniques close to treemaps [21].

There are many variations on the classic Steiner tree problem which employ metrics that are related to their specific target applications. Of particular relevance to this paper is the rectilinear Steiner arborescence (RSA) problem, which is defined as follows. We are given a root (usually at the origin) and a set of terminals t_1, \ldots, t_n in
the northeast quadrant of the plane. The goal is to find the shortest rooted rectilinear tree \(T \) with all edges directed away from the root, such that \(T \) contains all points \(t_1, \ldots, t_n \). For any edge of \(T \) from \(p = (x_p, y_p) \) to \(q = (x_q, y_q) \) it must hold that \(x_p \leq x_q \) and \(y_p \leq y_q \). If we drop the condition of rectilinearity then we arrive at the **Euclidean Steiner arborescence (ESA)** problem. In both cases it is NP-hard \([17, 18]\) to compute a tree of minimum length. Rao et al. \([16]\) give a simple 2-approximation algorithm for minimum rectilinear Steiner arborescences. Córdova and Lee \([8]\) describe an efficient heuristic which works for terminals located anywhere in the plane. Ramnath \([15]\) presents a more involved 2-approximation that can also deal with rectangular obstacles. Finally, Lu and Ruan \([12]\) developed a PTAS for minimum rectilinear Steiner arborescences, which is, however, more of theoretical than of practical interest.

Conceptually related are **gradient-constrained minimum networks** which are studied by Brazil et al. \([5, 6]\) motivated by the design of underground mines. Gradient-constrained minimum networks are minimum Steiner trees in three-dimensional space, in which the (absolute) gradients of all edges are no more than an upper bound \(m \) (so that heavy mining trucks can still drive up the ramps modeled by the Steiner tree). Krozel et al. \([11]\) study algorithms for turn-constrained routing with thick edges in the context of air traffic control. Their paths need to avoid obstacles (bad weather systems) and arrive at a single target (the airport). The union of consecutive paths bears some similarity with flow maps, although it is not necessarily crossing-free or a tree.

Results and Organization In Sect. 2 we derive properties of optimal (minimum length) flux trees. In particular, we show that they are crossing-free and that the arcs of optimal flux trees consist of (segments of) logarithmic spirals and straight lines. Flux trees have the **shallow-light property** \([3]\), that is, we can bound the length of an optimal flux tree in comparison with a minimum spanning tree on the same set of terminals and we can give an upper bound on the length of a path between any point in a flux tree and the root. Flux trees also naturally induce a clustering on the terminals and smoothly bundle curves. Unfortunately we can show that it is NP-hard (Sect. 4.1) to compute optimal flux trees. Hence, in Sect. 3 we introduce a variant of flux trees, so called **spiral trees**. The arcs of spiral trees consist only of logarithmic spiral segments. We prove that spiral trees approximate flux trees within a factor depending on the restricting angle \(\alpha \). Our experiments show that \(\alpha = \pi/6 \) is a reasonable restricting angle, in this case the approximation factor is \(\sec(\alpha) \approx 1.15 \). In Sect. 4.1 we show that computing optimal spiral trees remains NP-hard. For a special case, we give an exact algorithm in Sect. 4.2 that runs in \(O(n^3) \) time. In Sect. 4.3 we develop a 2-approximation algorithm for spiral trees that works in general and runs in \(O(n \log n) \) time. Finally, in Sect. 5 we extend our approximation algorithm (without deteriorating the approximation factor) to include “positive monotone” obstacles. This algorithms also works for general obstacles, but then the algorithm does not give a constant factor approximation. On the way, we develop a new 2-approximation algorithm for rectilinear Steiner arborescences in the presence of positive monotone obstacles. Both algorithms run in \(O((n + M) \log(n + M)) \) time, where \(M \) is the total complexity of all obstacles.
2 Optimal Flux Trees

Recall that our input consists of a root r, terminals t_1, \ldots, t_n, and a restricting angle $\alpha < \pi/2$. Without loss of generality we assume that the root lies at the origin. Recall further that an optimal flux tree is a geometric Steiner arborescence, whose arcs are directed from the terminals to the root and that satisfies the angle restriction. We show that the arcs of an optimal flux tree consist of line segments and parts of logarithmic spirals (Property 1), that any node except for the root has at most two incoming arcs (Property 2), and that an optimal flux tree is crossing-free (Property 3). Finally, flux trees (and also spiral trees) have the shallow-light property (Property 4).

Spiral Regions

For a point p in the plane, we consider the region \mathcal{R}_p of all points that are reachable from p with an angle-restricted path, that is, with a path that satisfies the angle restriction. Clearly, the root r is always in \mathcal{R}_p. The boundaries of \mathcal{R}_p consist of curves that follow one of the two directions that form exactly an angle α with the direction towards the root. Curves with this property are known as logarithmic spirals (see Fig. 3). Logarithmic spirals are self-similar; scaling a logarithmic spiral results in another logarithmic spiral. Logarithmic spirals are also self-approaching as defined by Aichholzer et al. [2], who give upper bounds on the lengths of (generalized) self-approaching curves. As all spirals in this paper are logarithmic, we simply refer to them as spirals. For $\alpha < \pi/2$ there are two spirals through a point. The right spiral S^+_p is given by the following parametric equation in polar coordinates, where $p = (R, \phi)$: $R(t) = Re^{-t}$ and $\phi(t) = \phi + \tan(\alpha)t$. The parametric equation of the left spiral S^-_p is the same with α replaced by $-\alpha$. Note that a right spiral S^+_p can never cross another right spiral S^+_q (the same holds for left spirals). The spirals S^+_p and S^-_p cross infinitely often. The reachable region \mathcal{R}_p is bounded by the parts of S^+_p and S^-_p with $0 \leq t \leq \pi \cot(\alpha)$. We therefore call \mathcal{R}_p the spiral region of p. It follows directly from the definition that for all $q \in \mathcal{R}_p$ we have that $\mathcal{R}_q \subseteq \mathcal{R}_p$.

Lemma 1 The shortest angle-restricted path between a point p and a point $q \in \mathcal{R}_p$ consists of a straight segment followed by a spiral segment. Either segment can have length zero.

Proof Consider the spirals S^+_q and S^-_q through q, specifically the parts with $t \leq 0$ (see Fig. 4). Any point on the opposite side of the spirals as p is unable to reach q. Thus any shortest path from p to q cannot cross either of these spirals. If we see these spirals as obstacles and ignore the angle restriction for now, the shortest path π is simply a straight segment followed by a spiral segment. Now consider any point u...
Fig. 4 Shortest path

Fig. 5 An optimal flux tree
($\alpha = \pi/6$)

Fig. 6 Property 2

on π. Because S_q^+ and S_u^+ cannot cross (same for S_q^- and S_u^-), we get that $q \in R_u$. Therefore π also satisfies the angle restriction. □

Property 1 An optimal flux tree consists of straight segments and spiral segments.

Proof Consider an optimal flux tree T. Now replace all edges between two nodes by the shortest angle-restricted path between the two points. This can only shorten T. By Lemma 1, the resulting flux tree consists of only straight segments and spiral segments (see Fig. 5). □

Property 2 Every node in an optimal flux tree T, other than the root r, has at most two incoming edges.

Proof Assume T contains a node at p with at least three incoming edges. Pick one of the incoming edges e that is not leftmost or rightmost and let q be the other endpoint of e. Let e_L and e_R be the leftmost and rightmost incoming edges of p (see Fig. 6). Now consider the straight line ℓ from q to the root r. Assume without loss of generality that ℓ passes p on the left side (the right side is symmetric with e_R) or ℓ goes through p. We claim that we can locally improve the length of T by moving
the endpoint at \(p \) of \(e \) along \(e_L \). The angle between \(e \) and \(e_L \) at \(p \) is at most \(\alpha \). Because \(\alpha < \pi / 2 \) and because locally moving the endpoint of \(e \) along \(e_L \) will not make the spiral segment of \(e \) longer, this will shorten the tree \(T \). Also, locally moving the endpoint of \(e \) along \(e_L \) cannot suddenly violate the angle restriction (assuming that \(\alpha > 0 \)). Contradiction.

\[\Box \]

Property 3 Every optimal flux tree is crossing-free.

Proof Assume two edges \(e_1 \) (from \(p_1 \) to \(q_1 \)) and \(e_2 \) (from \(p_2 \) to \(q_2 \)) cross. Let \(u \) be the crossing between \(e_1 \) and \(e_2 \). Now simply remove the part of \(e_1 \) from \(u \) to \(q_1 \). There is still a connection from \(p_1 \) to \(r \) via \(q_2 \), so the resulting tree is still a proper flux tree. Also, removing a segment cannot suddenly violate the angle restriction and makes the tree shorter. Contradiction.

\[\Box \]

The last property requires a more involved proof. We postpone the proof of this property until Sect. 3.1. Let \(d^T(p) \) be the distance between \(p \) and \(r \) in a flux tree \(T \) with root \(r \) and let \(d(p) \) be the Euclidean distance between \(p \) and \(r \). A flux tree \(T \) with root \(r \) is \((\beta, \gamma)\)-shallow-light with \(\beta, \gamma \geq 1 \) if \(d^T(p) \leq \beta d(p) \) for all terminals \(p \), and the length of \(T \) is bounded by \(\gamma \) times the length of a minimum spanning tree of the terminals.

Property 4 The length of an optimal flux tree \(T \) is at most \(O((\sec(\alpha) + \csc(\alpha)) \log n) \) times the length of the minimum spanning tree on the same set of terminals. Also, for every point \(p \in T \), \(d^T(p) \leq \sec(\alpha) d(p) \).

3 Spiral Trees

In this section we introduce **spiral trees** and prove that they approximate flux trees. The arcs of a spiral tree consist only of spiral segments of a given \(\alpha \) (see Fig. 7). In other words, an optimal spiral tree is the shortest flux tree that uses only spiral segments. Spiral trees satisfy the angle restriction by definition. Any particular arc of a spiral tree can consist of arbitrarily many spiral segments. That is, any arc of the spiral tree can switch between following its right spiral and following its left spiral an arbitrary number of times. The length of a spiral segment can easily be expressed in polar coordinates. Let \(p = (R_1, \phi_1) \) and \(q = (R_2, \phi_2) \) be two points on a spiral, then the distance \(D(p, q) \) between \(p \) and \(q \) on the spiral is

\[
D(p, q) = \sec(\alpha) |R_1 - R_2|.
\]

![Spiral tree with spiral regions](image-url)
Consider a shortest spiral path—using only spiral segments—between a point p and a point q reachable from p. The reachable region for p is still its spiral region \mathcal{R}_p, so necessarily $q \in \mathcal{R}_p$. The length of a shortest spiral path is given by Eq. (1). The shortest spiral path is not unique, in particular, any sequence of spiral segments from p to q is shortest, as long as we move towards the root. In the following we use $L(T)$ to denote the length of a tree T.

Theorem 1 The optimal spiral tree T' is a $\sec(\alpha)$-approximation of the optimal flux tree T.

Proof Let C_R be a circle of radius R with the root r as center. A lower bound for the length of T is given by $L(T) \geq \int_0^\infty |T \cap C_R| \, dR$, where $|T \cap C_R|$ counts the number of intersections between the tree T and the circle C_R. Using Eq. (1) and the fact that T' is a spiral tree, the length of T' is

$$L(T') = \sec(\alpha) \int_0^\infty |T' \cap C_R| \, dR. \quad (2)$$

Now consider the spiral tree T'' with the same nodes as T, but where all arcs between the nodes are replaced by a sequence of spiral segments (see Fig. 8). For a given circle C_R, this operation does not change the number of intersections of the tree with C_R, i.e. $|T \cap C_R| = |T'' \cap C_R|$. So we get the following:

$$L(T') \leq L(T'') = \sec(\alpha) \int_0^\infty |T'' \cap C_R| \, dR = \sec(\alpha) \int_0^\infty |T \cap C_R| \, dR \leq \sec(\alpha) L(T). \quad \Box$$

Next to the fact that optimal spiral trees are a good approximation of optimal flux trees, they also maintain important properties of optimal flux trees, namely Properties 2 and 3.

Lemma 2 An optimal spiral tree is crossing-free and every node, other than the root, has at most two incoming edges. The root has exactly one incoming edge.

Proof First of all, only two spirals go through a single point: the left and the right spiral. So every node other than the root r has at most two incoming arcs, otherwise there is a repeated spiral segment which can be removed. Now suppose the root had more than one incoming arc. We can make one of these arcs a left spiral and another a right spiral without making the tree longer. But these two spirals would then intersect, and we could obtain a shorter tree by continuing with only one arc after the intersection. Thus, the root can only have one incoming edge. Furthermore, the
same arguments as in the proof of Property 3 yield that also the optimal spiral tree is crossing-free.

□

When we approximate an optimal flux tree by a spiral tree, we can further reduce the length of the tree by replacing every arc by the shortest angle-restricted path between its endpoints. This operation does not improve the approximation factor, but it improves the tree visually (see for example the difference between T and T'' in Fig. 8).

3.1 Shallow-Light Property

In the following we prove the shallow-light property for optimal spiral trees. That is, we bound the length of an optimal spiral tree in comparison with a minimum spanning tree on the same set of terminals and we give an upper bound on the length of a path between any point in a spiral tree and the root. Since for flux trees the length of such paths and the total length are not larger, we can conclude that optimal flux trees also have the shallow-light property (Property 4). The second part of the property (shallowness) is easy to see. The path of a node to the root in any spiral tree is by Eq. (1) bounded by $\sec(\alpha)$ times the distance of the node to the root.

We now show that the length of an optimal spiral tree approximates the length of a minimum spanning tree by a factor of $O((\sec(\alpha) + \csc(\alpha)) \log n)$. We build a spiral tree in the following way. First we find a short cycle through the points. We then take a matching based on this cycle and pairwise join points by spiral segments. This results in $\lfloor n/2 \rfloor$ components. On these we again find a matching and pairwise join them and so on. We need to ensure that the set of spiral segments used in the construction is compatible with a spiral tree.

Throughout this section we will assume that the root of the tree is placed at the origin. We call a sequence of spiral segments between two points inward going if the distance from the segments to the origin has no local maxima except possibly at the two points. In particular, if a point is in the spiral region of another, a path of decreasing distance to the root from the outer point to the inner one would be inward going. Any pair of points can be joined by an inward going sequence of two spiral segments. Inward going sequences can be part of a spiral tree if we use the point with smallest distance to the root as a Steiner node in the spiral tree. We refer to these Steiner nodes as join nodes.

We need to bound the length of such a sequence. For this we first bound the length of a spiral segment. Let p, p' be two points on a spiral segment with polar coordinates $p = (R, \phi)$ and $p' = (R', \phi')$. Equation (1) gives us a bound in terms of R, R'. To bound the length in terms of R, ϕ, ϕ', let us assume $R' \leq R$. The other case is analogous. We consider the parametric equations of the spiral through p and p' with $(R(0), \phi(0)) = (R, \phi)$. For p' we obtain the equations $R' = R e^{-t}$ and $\phi' = \phi + \tan(\alpha) t$ (or $\phi' = \phi - \tan(\alpha) t$ depending on whether the points lie on a left or right spiral). Solving for R' yields $R' = R e^{-(|\phi' - \phi|)/\tan(\alpha)}$. Inserting this into Eq. (1) gives

$$D(p, p') = \sec(\alpha) R \left(1 - e^{-(|\phi' - \phi|)/\tan(\alpha)} \right).$$ (3)
Equation (3) has several consequences. Given two points \(p, q \) that do not lie in the spiral regions of each other. Assume we have two sequences of spiral segments, each connecting \(p \) and \(q \) such that no ray through the origin intersect a sequence twice. Also assume that, parameterized by the angle \(\phi \) to the origin, one sequence has a smaller or equal distance to the origin for all \(\phi \). Then sweeping over the angle and summing up the contributions of Eq. (3) gives that the sequence closer to the origin has a smaller (or equal) total arc length. Thus, the shortest connection between \(p \) and \(q \) is obtained by simply joining \(p \) and \(q \) by an inward going sequence of two spiral segments.

Another consequence of Eq. (3) is the following. Again \(p = (R, \phi), q = (R', \phi') \) are two points that do not lie in the spiral regions of each other. Further assume \(R, \phi, \phi' \) are given, but for \(R' \) we know only \(R' \leq R \). Then the arc length of the inward going sequence of two spiral segments joining \(p \) and \(q \) (using the angle range between \(\phi \) and \(\phi' \)) is maximized for \(R = R' \). This follows from the same argument as above, i.e., the resulting sequence of spiral segments dominates all others in terms of distance to the origin.

So far we have not linked the arc length of the spiral segments between two points with the Euclidean distance between the points. We do this by the following lemma.

Lemma 3 Two points in the plane at distance \(D \) can be connected by an inward going path of logarithmic spirals of angle \(\alpha \) such that the summed length of the spiral segments is bounded by \(3D \max(\sec(\alpha), \csc(\alpha)) \). The path uses at most two spiral segments.

Proof Let \(p_1, p_2 \) be two points of distance \(D \) with polar coordinates \(p_1 = (R_1, \phi_1) \) and \(p_2 = (R_2, \phi_2) \). Without loss of generality we assume that \(R_1 \leq R_2, \phi_1 \leq \phi_2 \) and \(\phi_2 - \phi_1 \leq \pi \). We first handle the case that \(p_1 \) lies in the spiral region of \(p_2 \). In this case we can connect the points by an inward going path from \(p_2 \) to \(p_1 \) using two spiral segments. By Eq. (1) the length of this path is \(\sec(\alpha)(R_2 - R_1) \). Combining this with the fact that \(R_2 - R_1 \) is at most \(D \), the length of the path from \(p_2 \) to \(p_1 \) is at most \(\sec(\alpha)D \). This proves the claim for this case.

Next we handle the case that \(p_1 \) does not lie in the spiral region of \(p_2 \) (see Fig. 9). In this case we join the points using the right spiral through \(p_1 \) and the left spiral through \(p_2 \). Let \(p = (R, \phi) \) be the point where the two points first join. The summed length of the spiral segments is \(L = \sec(\alpha)(R_1 + R_2 - 2R) \), which we need to bound in terms of \(D \).

![Fig. 9](image-url) Joining two points at distance \(D \)
We distinguish two cases. First assume the points have a distance of at most $3D/2$ to the root. We obtain the connection between the points by simply connecting both to the root. Then $L \leq \sec(\alpha)(R_1 + R_2) \leq 2\sec(\alpha)3D/2 = 3D\sec(\alpha)$. Next assume $R_2 > 3D/2$. From the discussion of Eq. (3) above we know that L is maximized for $R_1 = R_2$. In this case we have $\phi = (\phi_2 + \phi_1)/2$ and therefore

$$L = \sec(\alpha)(2R_2 - 2R_2 e^{-\phi_2 - \phi_1 \over 2\tan(\alpha)}) = \sec(\alpha)2R_2(1 - e^{-\phi_2 - \phi_1 \over 2\tan(\alpha)}) \leq \sec(\alpha)2R_2{\phi_2 - \phi_1 \over 2\tan(\alpha)} = \csc(\alpha)R_2(\phi_2 - \phi_1).$$

It remains to bound $R_2(\phi_2 - \phi_1)$ in terms of the Euclidean distance D of the two points. Observe that for given p_2 (with $R_2 > 3D/2$) and D the angle $\phi_2 - \phi_1$ is maximized if the line through the origin and p_1 is tangent to the circle of radius D around p_2. Thus $\phi_2 - \phi_1$ is maximized if the angle formed by p_2, p_1 and the origin is $\pi/2$. In this case $\phi_2 - \phi_1 = \arcsin(D/R_2)$. Thus, in general

$$\phi_2 - \phi_1 \leq \arcsin\left({D \over R_2}\right) = \arctan\left({D \over \sqrt{R_2^2 - D^2}}\right) \leq {D \over \sqrt{R_2^2 - D^2}}.$$

Since $R_2 > 3D/2$, we have $\sqrt{R_2^2 - D^2} \geq R_2\sqrt{1 - 4/9}$. Plugging this into the above bound gives $\phi_2 - \phi_1 \leq D/(R_2\sqrt{5/9})$. Now inserting this into the bound on L gives

$$L \leq \csc(\alpha)D/\sqrt{5/9} < 3\csc(\alpha)D.$$

Combining the cases results in the claimed bound.

\[\square\]

Theorem 2 The length of the optimal spiral tree of a set of points is bounded by $3[\log_2 n]\max(\sec(\alpha), \csc(\alpha))$ times the length of the minimum spanning tree of the set of points with the origin included.

Proof In the following we construct a spiral tree for which this bound holds. Let L be the length of the minimum spanning tree on the points including the origin. Let $\kappa = 3\max(\sec(\alpha), \csc(\alpha))$. Let C_1 be a cycle through the points of length at most $2L$ (e.g., obtained by ordering the points based on a depth first search in the minimum spanning tree). We replace each edge of C_1 by an inward going sequence of at most two spiral segments. This results in a cycle C'_1 of sequences of spiral segments of length at most $2\kappa L$. By taking either every even or every odd sequence we join pairs (possibly leaving the root unmatched) of nodes by spiral segments of total length at most κL. We repeat the construction on the join nodes (and possibly an unmatched point) using the cycle C_2 induced by the order given by C'_1. Again we form a cycle of spiral segments through the vertices of C_2. If we parameterize corresponding sequences in the cycles C'_1 and C'_2 by the angle ϕ from the origin, the sequences in cycle C'_2 are closer to the origin than the corresponding sequences in C'_1 for all angles. Thus as consequence of Eq. (3) the length of C'_2 is bounded by the length of C'_1 and therefore by $2\kappa L$. As in the previous step we can join pairs of join
nodes using spiral segments of total length at most κL. Next we construct C'_3 from C'_2 in the same way and iterate the construction. After at most $\lceil \log_2 n \rceil$ iterations all nodes have been joined. The total length is then $\lceil \log_2 n \rceil \kappa L$ as claimed.

3.2 Relation with Rectilinear Steiner Arborescences

Both rectilinear Steiner arborescences and spiral trees contain directed paths, from the root to the terminals or vice versa. Every edge of a rectilinear Steiner arborescence is restricted to point either right or up, which is similar to the angle restriction of flux and spiral trees. In fact, there exists a transformation from rectilinear Steiner arborescences into spiral trees. Consider the following transformation from the coordinates (x, y) of a rectilinear Steiner arborescence to the polar coordinates (R, ϕ) of a spiral tree.

\begin{align*}
R &= e^{x+y}, \\
\phi &= (y - x) \tan(\alpha).
\end{align*}

Assume we keep one of the coordinates x or y fixed. Using the spiral equation from Sect. 2 we see that the result is a spiral. More specifically, keeping x fixed results in left spirals and keeping y fixed results in right spirals. So that means that the above transformation transforms horizontal and vertical lines into right and left spirals, respectively (see Fig. 10). The transformation maps the root of the rectilinear Steiner arborescence to $(1, 0)$. Thus, to get a valid spiral tree, we still need to connect $(1, 0)$ to r.

Lemma 4 The transformation in Eq. (4) transforms a rectilinear Steiner arborescence into a spiral tree.

Unfortunately, the transformation has several shortcomings. First of all, the transformation is not a bijection, it is a surjection. That means we can invert the transformation, but only if we restrict the domain in the rectilinear space. But most importantly, the metric does not carry over the transformation. That means that it is not necessarily true that the minimum rectilinear Steiner arborescence transforms to the optimal spiral tree. Thus the relation between the concepts cannot be used directly and algorithms developed for rectilinear Steiner arborescences cannot directly be modified to compute spiral trees. However, the same basic ideas can often be used in both settings.

Fig. 10 A rectilinear Steiner arborescence transformed to a spiral tree
4 Computing Spiral Trees

In this section we describe algorithms to compute (approximations of) optimal spiral trees. First we show that it is NP-hard to compute optimal flux or spiral trees. Then we give an exact algorithm for computing optimal spiral trees in the special case that all spiral regions are empty, i.e., $t_i \notin R_{t_j}$ for all $i \neq j$. Finally we give an approximation algorithm for computing optimal spiral trees in the general case.

4.1 Computing Optimal Flux and Spiral Trees is NP-Hard

For the hardness proofs we will choose $\alpha = \pi/4$. The reduction is from the rectilinear Steiner arborescence (RSA) problem [18] for spiral trees, and from the Euclidean Steiner arborescence (ESA) problem [17] for flux trees. Shi and Su [18] proved by a reduction from planar 3SAT that the decision versions of the RSA problem and the ESA problem are NP-hard. Their reduction uses points on an $O(m \times m)$ grid, where m bounds the size of the 3SAT instance. We can assume the grid to be an integer grid. Now if there is a satisfying assignment, the optimal RSA and ESA have an integer length K, while if there is no such assignment the optimal RSA and ESA have length at least $K + 1$.

We can therefore state the problems for which they proved NP-hardness and from which we will reduce as follows.

Instance: A set of integer points $P = \{p_1, \ldots, p_N\}$ in the first quadrant of the plane with coordinates bounded by $O(N^2)$; a positive integer K.

Question (RSA): Is there a RSA of total length K or less? Otherwise the shortest RSA has length at least $K + 1$.

Question (ESA): Is there a ESA of total length K or less? Otherwise the shortest RSA has length at least $K + 1$.

The basic idea is sketched in Fig. 11. Assume we are given an instance of the Euclidean Steiner arborescence problem with polynomially bounded coordinates. We translate the set of terminals by a large polynomial factor along the diagonal with slope 1 and place a new root at the origin. If the bound on the coordinates is small (the square in Fig. 11) relative to the factor of the translation, then the angle formed by the line through any of the translated points and the origin with the x-axis is “more or less $\pi/4$”. A $\pi/4$-restricted flux tree thus behaves within this square “more or less” like an Euclidean Steiner arborescence. For spiral trees we use the same setup but show that the distances on the spiral tree approximate the L_1-norm. However,
quantifying “more or less” precisely is technically rather involved and will be done in this section.

To draw the connection from Steiner arborescences to flux and spiral trees we generalize the concept of RSAs and ESAs. For flux and spiral trees the angle α is bounded relative to the root while for RSAs and ESAs the angle that an edge can make with the x-axis is bounded (or with any given line through the origin). For ESAs the angle of an edge is in $[0, \pi/2]$, while for RSAs the angle is in $[0, \pi]$. We call a Steiner arborescence with angles in $[\beta, \pi/2 - \beta]$ a $(\geq \beta)$-Steiner arborescence ($(\geq \beta)$-SA) and a Steiner arborescence with angles in $[\beta, \pi/2 - \beta]$ a β-Steiner arborescence (β-SA). We do not restrict β to be positive but to $-\pi/4 < \beta < \pi/4$. In the following Steiner arborescences are typically not rooted at the origin.

Now let $-\pi/4 < \beta < \beta' < \pi/4$. Every $(\geq \beta')$-SA is a $(\geq \beta)$-SA but the converse does not hold. However, we can transform a $(\geq \beta)$-SA to $(\geq \beta')$-SA of similar length. Our transformation first transforms the whole tree and then connects the original points to their images under the first transformation. The transformation actually changes the location of the root. For the reduction we give this is not a problem because in the reduction we will have an additional root to which both the root of the original tree and the root of the transformed tree need to connect.

Let $\eta_1 = (-\cos \beta, -\sin \beta)$ and $\eta_2 = (-\sin \beta, -\cos \beta)$. Let p_1, \ldots, p_n be points with $p_i = u_i \eta_1 + v_i \eta_2$, $(u_i, v_i) \in [0, B]^2$, where B may depend on n. Let T be a $(\geq \beta)$-SA on p_1, \ldots, p_n with root $B \eta_1 + B \eta_2$. Let $\lambda = \cos(\beta + \beta')/\cos(2\beta')$ and $\eta_1' = \lambda(-\cos \beta', -\sin \beta')$ and $\eta_2' = \lambda(-\sin \beta', -\cos \beta')$. We transform T by the following transformation $\tau : \mathbb{R}^2 \to \mathbb{R}^2$: Any point $p = u \eta_1 + v \eta_2$ is mapped to $q = u \eta_1' + v \eta_2'$. We obtain a Steiner arborescence T' on p_1, \ldots, p_n with root $B \eta_1' + B \eta_2'$ by connecting p_i to $\tau(p_i)$ by a line segment. Let $\lambda' = \sin(\beta' - \beta)/\cos(\beta + \beta')$.

Lemma 5 T' is a $(\geq \beta')$-SA and $|T'| \leq \lambda |T| + 2\lambda' B n$.

Proof If we ignore the connections between the p_is and $\tau(p_i)$s the resulting transformed tree by construction fulfills the angle restriction and its length is $\lambda |T|$. We therefore only need to show that the connections fulfill the angle restriction and that the length of any connection is bounded by λ'. We have $p_i - \tau(p_i) = u_i(\eta_1 - \eta_1') + v_i(\eta_2 - \eta_2')$. It therefore suffices to prove that $\eta_1 - \eta_1'$ and $\eta_2 - \eta_2'$ fulfill the angle restriction. Since $\eta_2 - \eta_2'$ is $\eta_1 - \eta_1'$ mirrored at the diagonal with slope 1, it actually suffices to consider $\eta_1 - \eta_1'$.

Consider the triangle formed by the origin, η_1 and η_1' (see Fig. 12). We have $|\eta_1| = 1$ and $|\eta_1'| = \lambda$. By the law of sines $\lambda = \sin \gamma / \sin \gamma'$. This equation holds for $\gamma = \pi/2 + \beta + \beta'$, since then $\gamma' = \pi - (\beta' - \beta) - \gamma = \pi/2 - 2\beta'$ and therefore $\sin \gamma / \sin \gamma' = \sin(\pi/2 + \beta + \beta') / \sin(\pi/2 - 2\beta') = \cos(\beta + \beta') / \cos(2\beta') = \lambda$. On Fig. 12 Lemma 5
the other hand with \(\gamma = \pi/2 + \beta + \beta' \) we have \(\eta'_1 \) is indeed reachable from \(\eta_1 \) in a \((\geq \beta')\)-SA. The length of the connection is here the length of the third side of the triangle, which is \(\sin(\beta' - \beta)/\sin \gamma = \lambda' \). More generally the length of a connection is bounded by \(2B \), that is \(B \) for each coordinate. Since we have \(n \) such connections the bound of the lemma holds. \(\square \)

In Lemma 5 we have two summands, one depending on \(|T| \) and one on \(n \). Since the terminals lie on an integer grid and since every terminal has to connect to the tree, the length of the tree is at least of order \(n \).

Observation 1 If the terminals of a Steiner arborescence \(T \) have integer coordinates then \(n \leq 2|T| \).

Theorem 3 It is NP-hard to compute the optimal flux tree of a point set.

Proof Given an ESA instance with root \((0, 0)\) and with the coordinates \(x \) and \(y \) of any point \((x, y)\) on the tree bounded by \(cn^2 \), we translate every terminal by \(2n^k(1, 1) \) for a constant integer \(k \geq 2 \) specified later. We include the translated root in the point set but not as root. Instead we take \((0, 0)\) again as root. The shortest ESA is simply the originally shortest translated with one additional edge from \((2n^k, 2n^k)\) to \((0, 0)\).

Now, consider a point \((c'n^k + x, c'n^k + y)\) with \(c' \geq 1 \) and \(0 \leq x, y \leq cn^2 \). The angle of a line through this point and the origin with the diagonal of slope \(1 \) is bounded by \(\beta_{\max} = cn^2/n^k = c/n^{k-2} \). Now, restricted to such points every \((\geq \beta_{\max})\)-SA is a flux tree with \(\alpha = \pi/4 \), and every such flux tree a \((\geq -\beta_{\max})\)-SA. Also, every \((\geq \beta_{\max})\)-SA is a Euclidean Steiner arborescence, and every Euclidean Steiner arborescence a \((\geq -\beta_{\max})\)-SA. Thus, if we show that \((\geq \beta_{\max})\)-SAs approximate \((\geq -\beta_{\max})\)-SAs well, this directly implies that flux trees approximate Euclidean Steiner arborescences well. More specifically, if we want to show that the length of the shortest flux tree approximates the shortest Euclidean Steiner arborescence up to a precision of \(1 \) (so that we can make the distinction between \(K \) and \(K + 1 \)) then it is sufficient to prove that a \((\geq \beta_{\max})\)-SA \(T' \) can approximate a \((\geq -\beta_{\max})\)-SA \(T \) up to this precision.

By Lemma 5 and Observation 1 we get \(|T'| \leq \lambda|T| + 4c\lambda cn^2 n \leq |T|/(\lambda + 4c\lambda n^2) \).

Now, \(\lambda = 1/\cos(2\beta_{\max}) < 1/(1 - c/n^{k-2}) \) and \(\lambda' = \sin(2\beta_{\max}) < 2\beta_{\max} = c/n^{k-2} \).

Thus,

\[
\lambda + 4c\lambda n^2 < 1/(1 - c/n^{k-2}) + 8c^2/n^{k-4} = 1 + o(1/n^4)
\]

for \(k > 8 \). Since \(|T| = O(n^4) \), this allows us to approximate the length up a \(o(1) \)-term. Note that we still need to connect the root of \(|T'| \) and the root of \(|T| \) to \((0, 0)\). The length of this connection is slightly different because the roots of the trees are different, but the difference is negligible compared to the difference of \(|T'| \) and \(|T| \). \(\square \)

It remains to prove NP-hardness for spiral trees.

Theorem 4 It is NP-hard to compute the optimal spiral tree of a point set.

Proof We use the same construction as above for spiral trees but we start with a rectilinear Steiner tree instance instead of a Euclidean Steiner tree instance. To adapt
the reduction it suffices to show that within the relevant part of the tree, that is the part in \([2n^k, 2n^k + cn^2]\), the length of a spiral segment between two points \(p, q\) is up to a small error the same as \(c'' \|p - q\|\) for a suitable constant factor \(c''\). The length of the spiral is \(D(p, q) = \sec(\pi/4)\|p - q\| = \sqrt{2}\|p - |q|\|\). Assume \(x_q \leq x_p\) and \(y_q \leq y_p\). Let \(q' = (x_p, y_q)\). We have \(\|p - |q|\| = (\|p - |q'||) + (|q'| - |q|)\). The difference \(|p| - |q'|\) measures how much the distance to the origin decreases while moving from \(p\) to \(q'\). Let \(y_0 = y_p - y_q\) be the length of the line segment between \(p\) and \(q'\) and let \(\gamma(u)\) be the angle formed by the line through the origin and \(u\) with the \(x\)-axis. We have \(\|p - |q'|| = \int_0^{\gamma_0} \cos \gamma(u) du\). Now \(\pi/4 - \beta_{\text{max}} \leq \gamma(\sigma(u)) \leq \pi/4 + \beta_{\text{max}}\) and therefore \(1/\sqrt{2} - \beta_{\text{max}} \leq \cos \gamma(u) \leq 1/\sqrt{2} + \beta_{\text{max}}\). Thus \(\|p| - |q'| - y_0/\sqrt{2}\| \leq c/nk^{-2}\). By the same argument we have that \(\|q'| - |q| - x_0/\sqrt{2}\| \leq c/nk^{-2}\), where \(x_0 = x_p - x_q\). Therefore,

\[
|D(p, q) - \|p - q\|_1| = |\sqrt{2}(\|p| - |q'||) + (|q'| - |q|)\) - \|p - q\|_1| \\
\leq |\sqrt{2}(x_0/\sqrt{2} + y_0/\sqrt{2} + 2c/nk^{-2}) - \|p - q\|_1| \\
= 2\sqrt{2}c/nk^{-2}.
\]

Since the length of the RSA instance is in \(O(n^4)\), the difference between measuring the length of a spiral segment versus taking the \(L_1\)-distance of endpoints of segments is in \(o(1)\) for \(k \geq 4\). Thus, computing the optimal spiral tree is NP-hard.

To prove NP-hardness it was sufficient to consider one value of \(\alpha\), namely \(\alpha = \pi/4\). Nonetheless, it is an interesting question whether these results also hold for a given smaller \(\alpha\). We believe that the NP-hardness proof in [18] can be adapted to \(\beta\)-SAs and \((\geq \beta)\)-SAs for \(0 < \beta \leq \pi/4\). With this we could also generalize our result to smaller \(\alpha\).

4.2 Optimal Spiral Trees with Empty Spiral Regions

Assume we are given an input instance such that \(t_i \notin R_{t_j}\) for all \(i \neq j\). We give an exact polynomial time algorithm that computes optimal spiral trees for input instances with this property.

Before we discuss the algorithm, we first give a structural result on optimal spiral trees for these special instances. Assume all terminals are ordered radially (on angle) in counterclockwise direction around \(r\) and are numbered as such. This means that the first terminal \(t_1\) is arbitrary and the remaining terminals \(t_2, \ldots, t_n\) follow this order. First note that, for these instances, every terminal is a leaf in any spiral tree. That is because no terminal can be reached by another terminal, so no terminal can have incoming edges. More important is the following result.

Lemma 6 If the spiral regions of all terminals are empty, then the leaf order of any crossing-free spiral tree follows the radial order of the terminals.

Proof Assume this is not case, so that the leaf order skips leafs \(t_i, \ldots, t_j\), or in other words jumps from \(t_{i-1}\) to \(t_{j+1}\). Pick any terminal \(t_k\) with \(i \leq k \leq j\). Let \(\pi\) be the path
Corollary 1 If the spiral regions of all terminals are empty, then the leaf order of the optimal spiral tree follows the radial order of the terminals.

Using the above lemma we can use a simple dynamic programming algorithm to compute the optimal spiral tree. We simply solve all subproblems that ask for the optimal spiral subtree for a sequence of terminals t_i, \ldots, t_j. We require that this subtree is contained in the unbounded wedge w_{ij} from the radial line through t_i to the radial line through t_j (see Fig. 13 left). Define p_{ij} as the intersection of $S_{t_i}^+$ and $S_{t_j}^-$ ($p_{ii} = t_i$). As every internal node has exactly two incoming edges (Lemma 2), we split the subtree into two subtrees at every internal node. To compute the optimal spiral tree for a sequence of terminals t_i, \ldots, t_j, we simply compute the optimal way to split the subtree into two subtrees by trying all possibilities. We then connect both subtrees to p_{ij}. Note that, by Lemma 6, we need to check only $j - i$ ways to split this subtree. If $F(i, j)$ is the length of the optimal spiral subtree for the terminals t_i, \ldots, t_j (contained in w_{ij}), then we can perform dynamic programming using the following recursive relation.

$$F(i, j) = \begin{cases} 0, & \text{if } i = j, \\ \min_k (F(i, k) + F(k + 1, j) + D(p_{ik}, p_{ij}) + D(p_{k+1}j, p_{ij})), & \text{otherwise}. \end{cases}$$

(5)

Note that we allow $j < i$, because we have a cyclical order. However, the value of k in the above equation must be between i and j in the cyclical order. The distance function D is defined as in Eq. (1).

Lemma 7 The function $F(i, j)$ describes the length of the optimal spiral subtree for the terminals t_i, \ldots, t_j contained in w_{ij}.

Proof We prove the lemma by induction. If $i = j$, then $F(i, j) = 0$ is clearly correct. If $i \neq j$, then, by Lemma 6, we compute the minimum of all possible splits for the...
corresponding subtree. Let this split be between \(t_k \) and \(t_{k+1} \). By induction, \(F(i, k) \) and \(F(k + 1, j) \) describe the lengths of the optimal subtrees. We need to show that \(p_{ij} \) is the optimal point to join the subtrees. For the sake of contradiction, assume the optimal join point is \(p'_{ij} \). This point must be in the intersection of \(R_{ti} \), \(R_{tj} \) and \(w_{ij} \) (see Fig. 13 right). This means that \(p'_{ij} \in R_{ij} \). We can replace the edges \(p_{ik} \rightarrow p'_{ij} \) and \(p_{(k+1)j} \rightarrow p'_{ij} \) by the edges \(p_{ik} \rightarrow p_{ij} \), \(p_{(k+1)j} \rightarrow p_{ij} \), and \(p_{ij} \rightarrow p'_{ij} \). Since \(p'_{ij} \) must be closer to \(r \) than \(p_{ij} \), it follows from the definition of \(D \) in Eq. (1) that this operation shortens the tree. Contradiction. □

The length of the optimal spiral tree is not necessarily given by \(F(1, n) \), but it can also be any of the lengths \(F(i, i - 1) \) for \(2 \leq i \leq n \), so we need to compute the minimum of all these values. Note that there must be at least one wedge \(w_{(i-1)} \) that contains the entire optimal spiral tree, so this will give the length of the optimal spiral tree. Using additional information we can also compute the optimal spiral tree itself in this way. From the definition of \(F(i, j) \), it is clear that the algorithm runs in \(O(n^3) \) time.

Theorem 5 Given a set of terminals \(t_1, \ldots, t_n \) such that \(t_i \notin R_{tj} \) for all \(i \neq j \), we can compute the optimal spiral tree on these terminals in \(O(n^3) \) time.

4.3 Approximation Algorithm

As shown in Sect. 4.1, computing the optimal spiral tree is NP-hard in general. In this section we describe a simple algorithm that computes a 2-approximation of the optimal spiral tree. Note that, using Theorem 1, this algorithm also directly computes a \((2\sec(\alpha)) \)-approximation of the optimal flux tree.

For rectilinear Steiner arborescences, Rao et al. [16] describe a simple 2-approximation algorithm. The transformation mentioned in Sect. 3.2 does not preserve length, so we cannot use this algorithm for spiral trees. However, below we show how to use the same global approach—sweep over the terminals from the outside in—to compute a 2-approximation for optimal spiral trees in \(O(n \log n) \) time.

The basic idea is to iteratively join two nodes, possibly using a Steiner node, until all terminals are connected in a single tree \(T \), the greedy spiral tree. Initially, \(T \) is a forest. We say that a node (or terminal) is **active** if it does not have a parent in \(T \). In every step, we join the two active nodes for which the **join point** is farthest from \(r \). The join point \(p_{uv} \) of two nodes \(u \) and \(v \) is the farthest point \(p \) from \(r \) such that \(p \in R_u \cap R_v \). This point is unique if \(u, v \) and \(r \) are not collinear.

Lemma 8 The greedy spiral tree is crossing-free.

Proof Assume there is a crossing in the greedy spiral tree between two spiral segments, one between \(u_1 \) and its parent \(v_1 \), and another between \(u_2 \) and its parent \(v_2 \) (see Fig. 14). Note that the intersection must be farther from \(r \) than both \(v_1 \) and \(v_2 \). But that means that the intersection must have been encountered as a join point before either \(v_1 \) or \(v_2 \) was found, so this intersection should be a node in the greedy spiral tree. Contradiction. □

\(\odot \) Springer
The algorithm sweeps a circle C, centered at r, inwards over all terminals. All active nodes that lie outside of C form the wavefront W (the black nodes in Fig. 15). W is implemented as a balanced binary search tree, where nodes are sorted according to the radial order around r. We join two active nodes u and v as soon as C passes over p_{uv}. For any two nodes $u, v \in W$ it holds that $u \notin R_v$. By Lemma 8 the greedy spiral tree is crossing-free, so we can apply Lemma 6 to the nodes in W. Hence, when C passes over p_{uv} and both nodes u and v are still active, then u and v must be neighbors in W. We process the following events.

Terminal. When C reaches a terminal t, we add t to W. We need to check whether there exists a neighbor v of t in W such that $t \in R_v$. If such a node v exists, then we remove v from W and connect v to t. Finally we compute new join point events for t and its neighbors in W.

Join point. When C reaches a join point p_{uv} (and u and v are still active), we connect u and v to p_{uv}. Next, we remove u and v from W and we add p_{uv} to W as a Steiner node. Finally we compute new join point events for p_{uv} and its neighbors in W.

We store the events in a priority queue Q, ordered by decreasing distance to r. Initially Q contains all terminal events.

Lemma 9 The greedy spiral tree can be computed in $O(n \log n)$ time.

Proof In the algorithm above every join point event adds a node to T and every node generates at most two join point events, so the total number of events is $O(n)$. A single event can be handled in $O(\log n)$ time, so the total running time is $O(n \log n)$.

Next we prove that the greedy spiral tree is an approximation of the optimal spiral tree.

Lemma 10 Let C be any circle centered at r and let T and T' be the optimal spiral tree and the greedy spiral tree, respectively. Then $|C \cap T'| \leq 2|C \cap T|$ holds where $|C \cap T'|$ is the number of intersection points between C and T'.

[Springer]
Fig. 16 Nodes $u_i \in W$, terminals u^L_i, u^R_i and intervals

Fig. 17 $I_i^R \subset I_{i+1}^L$

Proof It is easy to see that $|C \cap T'| = |W|$ when the sweeping circle is C. Let the nodes of W be u_1, \ldots, u_k, in radial order. Any node u_i is either a terminal or it is the intersection of two spirals originating from two terminals, which we call u^L_i and u^R_i (see Fig. 16). We can assume the latter is always the case, as we can set $u^L_i = u^R_i = u_i$ if u_i is a terminal. Next, let the intersections of T with C be v_1, \ldots, v_h, in the same radial order as u_1, \ldots, u_k. As T has the same terminals as T', every terminal u^L_i and u^R_i must be able to reach a point v_j. Let I^L_i and I^R_i be the reachable parts (intervals) of C for u^L_i and u^R_i, respectively (that is $I^L_i = C \cap R_{u^L_i}$ and $I^R_i = C \cap R_{u^R_i}$). Since any two neighboring nodes u_i and u_{i+1} have not been joined by the greedy algorithm, we know that $I^L_i \cap I^R_{i+1} = \emptyset$. Now consider the collection S_j of intervals that contain v_j. We always treat I^L_i and I^R_i as different intervals, even if they coincide. The union of all S_j has cardinality $2k$. If $|S_j| \geq 5$, then its intervals cannot be consecutive (i.e. $I^L_i, I^R_i, I^L_{i+1}, I^R_{i+1}$, etc.), as this would mean it contains both I^L_i and I^R_{i+1} for some i. So say the intervals of S_j are not consecutive and S_j contains I^L_i and I^L_{i+1}, but not I^R_i (other cases are similar). T' is crossing-free, so this is possible only if $I^R_i \subset I^L_{i+1}$ (see Fig. 17). But then I^R_i and I^L_{i+1} are both in a collection S_j' and we can remove I^L_{i+1} from S_j, while keeping the union of all collections the same. We repeat this process to construct reduced collections \hat{S}_j such that the union of all collections remains the same and all intervals in a collection \hat{S}_j are consecutive. As a result, $|\hat{S}_j| \leq 4$, and hence $4h \geq 2k$ or $k \leq 2h$.

Theorem 6 The greedy spiral tree is a 2-approximation of the optimal spiral tree and can be computed in $O(n \log n)$ time.
Proof The time bound is given in Lemma 9. For the approximation, recall that by Eq. (2) \(L(T) = \sec(\alpha) \int_0^\infty |T \cap C_R| dR \), where \(T \) is any spiral tree and \(C_R \) is the circle of radius \(R \) centered at \(r \). Using Lemma 10, we can directly conclude that the greedy spiral tree is a 2-approximation of the optimal spiral tree.

The approximation factor is most likely not tight. Experiments for rectilinear Steiner arborescences show that the greedy algorithm often computes near-optimal arborescences [8].

5 Approximating Spiral Trees in the Presence of Obstacles

In this section we extend the approximation algorithm of Sect. 4.3 to include obstacles. Given the similarities between spiral trees and rectilinear Steiner arborescences described in Sect. 3.2, we first consider the problem of computing rectilinear Steiner arborescences in the presence of obstacles. Unfortunately, the only known algorithm is only partially correct. We will discuss this in more detail in Sect. 5.1. Then in Sect. 5.2 we give a new algorithm for computing rectilinear Steiner arborescences in the presence of obstacles. For a certain type of obstacles, our algorithm computes a 2-approximation of the optimal rectilinear Steiner arborescence. Finally in Sect. 5.3 we extend our algorithm to compute spiral trees in the presence of obstacles, again computing a 2-approximation for a certain type of obstacles.

5.1 Ramnath’s Algorithm for Rectilinear Steiner Arborescences

Ramnath [15] gives a 2-approximation algorithm for rectilinear Steiner arborescences with rectangular obstacles. The idea of the algorithm is to propagate a wavefront out from the root. During this process the arborescence is constructed greedily maintaining a minimal cover, that is, a minimal set of points (called cover points) on the wavefront such that all remaining terminals can still be connected. Unfortunately, the algorithm as given in [15] does not achieve the claimed running time. Furthermore, the claim that the results extend to arbitrary rectilinear obstacles does not hold.

Concerning the running time, the algorithm needs to compute the point at which the critical regions of neighboring cover points meet. A critical region is a region that can be exclusively reached by one of the cover points. The meeting point is found by tracing paths from both cover points. The cost of this tracing step is not handled correctly in the analysis and it is not clear how to account for it. Specifically, the algorithm for certain input instances might run in \(\Omega(n^2) \) time. We give details on this shortcoming in the Appendix.

In the presence of arbitrary rectilinear obstacles a rectilinear Steiner arborescence is a Steiner tree connecting the terminals to the root such that the tree contains for every terminal a shortest path (where length is measured using the \(L_1 \)-norm) to the root. There are problem instances for which a direct application of the approach in [15] cannot result in a constant approximation ratio. In fact this is already the case for rectangular obstacles if these may intersect a coordinate axis. These problem instances are given in the Appendix.
5.2 Rectilinear Steiner Arborescences

We are now given a root \(r \) at the origin, terminals \(t_1, \ldots, t_n \) in the upper-right quadrant, and also \(m \) polygonal obstacles \(B_1, \ldots, B_m \) with total complexity \(M \). We place a bounding square around all terminals and the root and consider the “free space” between the obstacles as a polygonal domain \(P \) with \(m \) holes and \(M + 4 \) vertices. We describe a greedy algorithm that computes a rectilinear Steiner arborescence \(T \), the greedy arborescence, inside \(P \). Our algorithm returns only a topological representation of \(T \). This can easily be extended to the explicit arborescence, which, however, can have arbitrarily high complexity.

As before we incrementally join nodes until we have a complete arborescence. This time we sweep a diagonal line \(L \) over \(P \) towards \(r \) and maintain a wavefront \(W \) with all active nodes that \(L \) has passed. If \(L \) reaches a join point \(p_{uv} \) of nodes \(u, v \in W \), we connect \(u \) and \(v \) to \(p_{uv} \) and add the new Steiner node to \(W \). Our greedy arborescence is restricted to grow inside the polygonal domain \(P \). If a point \(p \in P \) cannot reach \(r \) with a monotone path in \(P \), then \(p \) is not a suitable join point. To simplify matters we compute a new polygonal domain \(P' \) from \(P \), such that for every \(p \in P' \), there is a monotone path from \(p \) to \(r \) in \(P \). For now we simply assume that we are given \(P' \) and that it has \(O(M) \) vertices.

To compute join points we keep track of the reachable region of every node \(u \in W \), that is, we keep track of the part of \(L \) that can be reached from \(u \) via a monotone path in \(P' \). As soon as two nodes \(u, v \in W \) can reach the same point \(p \) on \(L \), then \(p \) is the join point \(p_{uv} \) and we can connect \(u \) and \(v \) to \(p_{uv} \). To compute the path between \(u \) and \(v \) and \(p_{uv} \), we need some additional information. Here our definitions follow Mitchell [13]. Given two points \(p, q \in P' \) (with \(x_q \leq x_p \) and \(y_q \leq y_p \), let \(R(p, q) \) be the rectangle with \(p \) and \(q \) as corners (see Fig. 18). We say that \(q \) is immediately accessible from \(p \) if \(p \) and \(q \) are in the same connected component of \(R(p, q) \cap P' \) and this connected component does not contain any other vertices or nodes. The parent of a point \(p \in P' \) is the rightmost vertex or node from which \(p \) is immediately accessible. The topological representation of the greedy arborescence stores only the parent information.

The status of the sweep line \(L \) consists of three types of intervals: (i) free intervals: points that cannot be reached by any node in \(W \), (ii) obstacle intervals: points not in \(P' \), and (iii) reachable intervals: points reachable by a node in \(W \). The latter type of interval is tagged with the unique node in \(W \) that can reach this interval. We split the reachable intervals such that every interval has a unique parent. The intervals are stored by their endpoints in a balanced binary search tree. Initially, the status of \(L \) consists of one obstacle interval. We distinguish three types of events, which are processed in order using a priority queue.

Fig. 18 Immediately accessible
When we encounter a terminal t_i, there are two cases. Either the terminal is in a free interval or in a reachable interval tagged by a node u. In the latter case, we connect u to t_i (using the parent information) and replace u by t_i in \mathcal{W}. Also, we replace all intervals tagged with u by free intervals and merge them where possible. In both cases, we start a new interval for t_i. For the endpoints of this interval, we trace the intersections between L and the horizontal and vertical line through t_i. Note that we also split an interval, so we add three intervals in total and remove one. For every new interval (or merged interval), we add vanishing events to the event queue.

When we encounter a vertex v, then v can be in any type of interval (see Fig. 19). If v is in a free interval, then we add an obstacle interval, where the endpoints of the interval trace the edges of P' connected to v. If v is in an obstacle interval, then we add a free interval, where the endpoints of the interval trace the edges of P' connected to v. Otherwise, v is in a reachable interval or at the endpoint between a reachable interval and an obstacle interval. In the first case, we need to insert an obstacle interval at v, as described above. In both cases we need to set the parent of v and insert a new reachable interval for v (with the correct tag). Also, we need to follow the edge or edges of P' connected to v. This can create free intervals. If one of the endpoints of the reachable interval of v directly moves out of P', we do not need to add this endpoint, but we can use the endpoint of the obstacle interval instead. Note that we add only a constant number of intervals. For the new intervals, we add vanishing events to the event queue.

If an interval I vanishes, then there are different cases depending on the types of the neighboring intervals I_1 and I_2. Note that I vanishes at a point p where two endpoints meet. If I_1 and I_2 are reachable intervals with different tags u_1 and u_2, then p is the join point for u_1 and u_2. We join u_1 and u_2 at p, as described in the terminal event. Otherwise, we need to remove one of the two endpoints. An endpoint of an interval always follows an edge of P' or a vertical or horizontal line through a node in \mathcal{W} or a vertex of P'. If I_1 and I_2 are obstacle intervals or free intervals, then we can just remove both endpoints of I. If I_1 and I_2 are reachable intervals with the same tag, then we keep the endpoint that follows a horizontal line (this follows the definition of a parent given above). If I_1 and I_2 are of different types, then we keep the endpoint of the obstacle interval if one is present and otherwise we keep the endpoint of the reachable interval. Again, we add vanishing event points to the event queue for every interval for which an endpoint has changed.
The algorithm terminates when L reaches r, at which point we have one node left in W. Using the parent information in the status, we connect the final node with r.

We did not describe yet how to compute P' from P. This can actually be computed using the same sweep line algorithm, except that we now sweep in the opposite direction, tracing the “reachable region” of r. The points that border a reachable interval and either a free or obstacle interval trace out P'.

Lemma 11 The greedy arborescence can be computed in $O((n + M) \log(n + M))$ time.

Proof First we give a bound for the number of events. Clearly, the number of terminal and vertex events are bounded by $O(n + M)$. This also means that the total number of intervals is bounded by $O(n + M)$, as we add a constant number of intervals at only these events. At every vanishing interval event we remove an interval, so the total number of events is $O(n + M)$. Also note that every event can generate only a constant number of events. From this it directly follows that P' has complexity $O(M)$ as assumed, since we add vertices to P' only at events. It is easy to see that all events can be executed in $O(\log(n + M))$ time, except when we need to change all intervals tagged by a certain node u to free intervals. We can do this in $O(n_u)$ time (by simple bookkeeping), where n_u is the number of intervals tagged by u. An interval can only once be changed to a free interval. Merging two neighboring free intervals removes one interval, so we can charge these operations to the total number of intervals. Furthermore, the topological representation of the greedy arborescence contains only the relevant vertices and nodes to compute the paths between nodes. Every vertex or node can occur only once in this representation. So the algorithm runs in $O((n + M) \log(n + M))$ time. □

If P has only positive monotone holes, then the greedy arborescence is a 2-approximation of the optimal rectilinear Steiner arborescence. A hole is positive monotone if its boundary contains two points p and q such that both paths on the boundary from p to q are monotone in both the x-direction and the y-direction. In the next section we prove this result for spiral trees. The same arguments can directly be applied to prove the same result for rectilinear Steiner arborescences.

Theorem 7 The greedy arborescence can be computed in $O((n + M) \log(n + M))$ time. If P has only positive monotone holes, then the greedy arborescence is a 2-approximation of the optimal rectilinear Steiner arborescence.

5.3 Spiral Trees

We now describe how to adapt our algorithm to spiral trees; we concentrate mainly on the necessary changes. We again compute only a topological representation of the output and refer to the spiral tree which we compute as the greedy spiral tree. The sweep line is replaced by a sweeping circle C. A simple balanced binary search tree is still sufficient to store the intervals, using special cases to deal with the circular topology.
We need to replace horizontal and vertical lines by right and left spirals. For a given node or vertex u, the endpoints of its interval on C follow the intersections of S_u^+ and S_u^- with C. Given two points p and q ($q \in \mathcal{R}_p$), let $SR(p, q)$ be the spiral rectangle between p and q (see Fig. 20). The spiral rectangle between p and q is bounded by the two paths (these are unique) consisting of exactly two spiral segments connecting p to q (this is exactly a rectangle transformed by the transformation in Sect. 3.2). The point q is immediately accessible from p if p and q are in the same connected component of $SR(p, q) \cap P'$ and this connected component does not contain any other vertices or nodes.

There is one subtlety. If the left or right spiral of a vertex v directly moves out of P, we can ignore it, as in Sect. 5.2. However, at the exact moment that this is no longer the case, we do need to trace this spiral. For rectilinear Steiner arborescences, this can happen only at vertices. For spiral trees, this can also happen at up to two spiral points in the middle of an edge e (see Fig. 21). A point p on e is a spiral point if the angle between the line from p to r and the line through e is exactly α. We hence subdivide every edge of P at the spiral points. In addition we also subdivide e at the closest point to r on e to ensure that every edge of P has a single intersection with C. This does not increase the asymptotic complexity of P.

After these minor changes, the algorithm proceeds in exactly the same way as for rectilinear Steiner arborescences, and all events can be handled as described in Sect. 5.2.

Neither the algorithm presented in Sect. 5.2 nor its adaptation to spiral trees gives a constant factor approximation. But, if we restrict the types of obstacles, they give 2-approximations. For rectilinear Steiner arborescences we have to use positive monotone obstacles, for spiral trees spiral monotone obstacles. An obstacle is spiral monotone if its boundary contains two points p and q such that both paths on the boundary from p to q are angle-restricted.
Lemma 12 Let P be a polygonal domain with spiral monotone holes. Then all points on a circle C reachable from a node u lie inside a single circular interval $I_u \subseteq C$ with the property that every point in $I_u \cap P$ is reachable from u.

Proof Consider a point $p \in I_u \cap P$. Let π_1 and π_2 be the paths from u to the endpoints of I_u. Repeat the following until we hit either π_1 or π_2. Move along the left spiral through p going outwards (from r). When we hit a hole, simply follow the outline of the hole until we can follow the left spiral again. Because P has only spiral monotone holes, we eventually reach either π_1 or π_2. Hence p must be reachable from u. □

Theorem 8 The greedy spiral tree can be computed in $O((n + M) \log(n + M))$ time. If P has only spiral monotone holes, then the greedy spiral tree is a 2-approximation of the optimal spiral tree.

Proof Correctness and running time follow from Lemma 11 and the discussion in Sect. 5.3. Assume that P has only spiral monotone holes and let T and T' be the optimal and greedy spiral tree, respectively. By Lemma 12 we can represent the part of a circle C that is reachable by a terminal t as a single interval I_t. We can now follow the proof of Lemma 10 with these intervals to show that $|C \cap T'| \leq 2|C \cap T|$. This directly implies that, if P has only spiral monotone holes, the greedy spiral tree is a 2-approximation. □

6 Conclusions and Open Problems

In this paper we set the basis for a new algorithm to compute flow maps, which is used in our companion paper [7] to create high-quality flow maps. We introduced a new variant of geometric minimal Steiner arborescences, flux trees, which captures the essential structure of flow trees. We use spiral trees to compute a $(2\sec(\alpha))$-approximation for optimal flux trees in $O(n \log n)$ time. This algorithm can be extended to include polygonal obstacles, but the approximation factor is maintained only if all obstacles are spiral monotone.

Several interesting open problems remain: First of all, is there a constant factor approximation algorithm that computes spiral trees in the presence of obstacles that are not spiral monotone? Second, many flow maps use more than one flow tree. Often, these trees cross and hence one would like to minimize the number of crossings or ensure that all crossings can be drawn at (close to) right angles. Can one compute optimal flow trees in this scenario? Last, there are also maps which use flow networks, that is, flow “trees” with more than one source. Can the concept of flux trees be generalized to such networks?

Appendix

Here we discuss the algorithm presented in [15] in more detail.
Fig. 22 A rectilinear region (grey) is being searched many times.

When the sweepline of algorithm in [15, Sect. 4] meets the lower left corner of an obstacle that is in the critical region of a cover point then the algorithm needs to decide whether or not to introduce a Steiner point. This case is handled [15, p. 866, Case iii] by searching in both of the potential critical regions for terminals. The regions are searched by decomposing them into rectangles and performing range queries on the rectangles. It is argued that searching the rectilinear regions takes amortized $O(\log n)$ time per region, because with each range query there is some corner of an obstacle that does not need to be considered again. Here n denotes the complexity of the input. However, if there are obstacles in the regions then those may cause similar events, which force the algorithm to search part of the same region again.

Theorem 9 There are inputs for which the algorithm presented in [15, Sect. 4] takes at least quadratic time.

Proof Consider the configuration in Fig. 22. It contains two groups of rectangular obstacles both containing $\Theta(n)$ obstacles. Now every time the sweepline encounters a lower left corner (marked in the figure by a small disk) of one of the rectangles in the lower group it needs to check two rectilinear regions. One of those regions will always contain the region shown in light grey. Since this region has linear complexity and it is searched a linear number of times the total running time is $\Omega(n^2)$.

In the following we consider the case of more general obstacles, that is, rectangular obstacles that intersect a coordinate axis and rectilinear obstacles. The approximation ratio of 2 relies on the following argument: Assume we propagate a wavefront from the root such that the wavefront W_t at time $t \geq 0$ corresponds to the points reachable by a shortest path of length t, where the length is measured using the L_1-norm. Then we can compute the total length of an arboresence T by integrating $|W_t \cap T|$ over t. It is then sufficient to prove that a minimal cover contains at most twice the number of points of a minimum cover. If all obstacles are rectangles and lie in one quadrant, then the wavefront is simply a line of slope -1 or 1 (depending on the quadrant) restricted to the corresponding quadrant and it can be easily seen that any cover point can cover at most the critical regions of two cover points of a minimal cover. Therefore the approximation ratio of 2 indeed holds in this case. We call a rectilinear Steiner arboresence T with the property that $|W_t \cap T|$ is minimal for all $t \geq 0$ a *minimal cover (rectilinear Steiner) arboresence*. Unfortunately a minimal cover arboresence might approximate the minimum rectilinear Steiner arboresence badly, in particular worse than by a factor of 2. In the following we first handle the case of arbitrary rectilinear obstacles that lie in one quadrant, and then the case of rectangular obstacles with one obstacle intersecting a coordinate axis.
Theorem 10 There are input instances for which the minimal cover rectilinear Steiner arborescence in the presence of rectilinear obstacles is $\Omega(n)$ times longer than the minimum rectilinear Steiner arborescence, even if the obstacles are restricted to lie in one quadrant.

Proof Consider the configuration of points and obstacles depicted in Fig. 23 (left). The obstacles are L-shaped with the longer (vertical) side of the L being much longer than the shorter (horizontal) one. Between each consecutive pair of obstacles there is a terminal, where the first terminal is placed such that its shortest path to the root passes the first obstacle to the right and below. A rectilinear Steiner arborescence will therefore connect the first terminal to the root by a connection that passes the first obstacle to the right and below. An algorithm that builds a rectilinear Steiner arborescence by maintaining a minimal cover will then necessarily connect to each terminal from below, that is, by a connection corresponding to the longer side of the L-shape (Fig. 23 (middle)). In contrast, the optimal arborescence connects all other terminals by a connection corresponding to the shorter side of the L-shape (Fig. 23 (right)).

Let ℓ be the longer edge length of one of the L-shapes and let $\varepsilon > 0$. By making the L-shapes sufficiently thin, we can assume that all L-shapes lie in a vertical strip of width ε and that each point (except for the first) that is connected from below to the root adds at least $\ell - \varepsilon$ to an arborescence. The minimal cover arborescence has therefore length $\Omega(n(\ell - \varepsilon))$, while the minimum arborescence has length $O(\ell + n\varepsilon)$. By choosing $\varepsilon = O(1/n)$ the claim follows. □

Theorem 11 There are input instances with one obstacle crossing the x-axis for which the minimal cover rectilinear Steiner arborescence in the presence of rectangular obstacles is $\Omega(n)$ times longer than the minimum rectilinear Steiner arborescence.

Proof The proof uses the same line of arguments as the proof of Theorem 10. Consider the configuration of points and obstacles depicted in Fig. 24 (left) with the obstacles being much longer than wide. Any shortest path from the first (that is, leftmost) terminal to the root passes below the first obstacle. For all other terminals there are shortest paths from the terminal to the root passing below the obstacles (that lie left of the terminal), but also shortest paths passing to the left of these obstacles.
Fig. 24 Minimal cover arborescence in the presence of rectangular obstacles that may cross the coordinate axis. Left: Configuration with large approximation factor. Middle: Arborescence constructed using minimal cover. Right: Optimal arborescence

Now by definition any rectilinear Steiner arborescence connects the first terminal by a path going below the first obstacle. A Steiner arborescence that is constructed using a minimal cover will then continue to connect all terminals from below, while the minimum Steiner arborescence connects all terminals from the left. The bound now follows as in the proof of Theorem 10. □

Note that the case of rectangular obstacles with obstacles crossing a coordinate axis is explicitly handled in [15]. There it is claimed [15, end of p. 867] that the approximation ratio of 2 follows by the same arguments as for the case that all rectangular obstacles lie in one quadrant. As Theorem 11 shows this cannot be the case in general.

References