A thermal sensor for minimally invasive blood flow assessment

Citation for published version (APA):

Document status and date:
Published: 01/01/2012

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
A thermal sensor for minimally invasive blood flow assessment

Arjen van der Horst1,2, Dennis van der Voort2, Benjamin Mimoun1, Marcel Rutten2, Ronald Dekker1, and Frans van de Vosse2

1 Delft University of Technology, ECTM, Flexible and Stretchable Electronics
2 Eindhoven University of Technology, BME, Cardiovascular Biomechanics

Introduction

Accurate hemodynamic measurements are required to assess the functional significance of coronary artery disease. In contrast to pressure, accurate flow measurement in coronary arteries is still a major challenge.

In previous studies, a flexible flow sensor to be bent around a guide wire has been designed [1] and manufactured [2]. Here, the first flow experiments with the sensors on a flat surface, are presented.

Methods

The sensor consists of two thermopiles (Fig. 1) measuring the temperature difference between T_d and T_u and between T_h and T_f. The heater is controlled such that T_h-T_f remains constant at 5K. The power required is then used as a measure for the shear rate.

The flexible sensors are mounted across a channel, through which flow/shear rate can be applied to the sensors (Fig. 2). Two types of shear rates were used to characterize the sensors: Sinusoidal shear rates with different amplitudes ($A = 500,1000,2000$ s\(^{-1}\)) and frequencies ($f = 1/3,1,2$ Hz) and typical shear rate dynamics found in coronary arteries.

Results & Conclusion

Fig. 3 demonstrates that, in a sinusoidal shear rate, the power is a good measure for the shear rate and that T_h-T_u can be used to detect shear rate reversal.

By constructing a quasi-steady calibration relation between the shear rate and power, valid for all nine sinusoidal shear rates, the shear rate could be measured for a coronary-like shear rate (Fig. 4).

Conclusion: The first experiments clearly demonstrate that the flexible sensors are suitable for shear rate assessment.

References