Simulation of mixing in intermeshing co-rotating twin-screw extruders

Citation for published version (APA):

Document status and date:
Published: 01/01/2008

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Oct. 2020
Simulation of Mixing in Intermeshing Co-Rotating Twin-Screw Extruders
A. Sarhangi Fard, P. D. Anderson, M. A. Hulsen, H. E. H. Meijer

Introduction
The simulation of fluid flow in industrial processes often involves geometries that may contain moving internal parts. A typical example is that of the twin-screw extruder. It is evident to classical finite element practitioners to tackle such problems is far from being trivial since a new mesh is needed at each time iteration owing to the motion of the internal parts.

Objective
The objective of this work is mixing analysis in the 3D intermeshing co-rotating twin screw extruders via particle tracking.

Methods
We selected two kinds of screw elements; standard conveying element and kneading element with a stagger angle of 45° in a forward configuration (figure 1).

Fig. 1 Intermeshing co-rotating twin screw: standard conveying element and kneading element with a stagger angle of 45° in a forward configuration.

For 3D simulation of fluid flow in the twin screw extruders (TSE), we used a combination of the fictitious domain and finite element methods. To improve accuracy we applied non-conformal mesh refinement[1,2]. Periodic boundary conditions were applied for inlet and outlet boundaries. Non-conformal mesh refinement is needed to obtain adequate accuracy in the gaps that may be very small and the position of which varies over time. The reference mesh may be adapted locally according to the position of the screws in the computational domain. Ensuring continuity at the interface between non-conformal elements is implemented by using a Lagrangian multiplier (figures 2-3).

Fig. 2 A cross section view of elements that refined near screw surface: (a) before refinement, (b) after refinement.

Results
From the Eulerian velocity field \(\mathbf{v}(x, t) \) the particle path of \(X \) is given by the numerical solution of:
\[
dx/dt = \mathbf{v}(x, t), \quad x = X_0 \text{ at } t = t_0
\]
Residence time distributions were obtained based on the calculation of particle tracers. The residence time density function \(f(t) \) is defined as the probability that the residence time is in the interval \((t, t + \Delta t)\). We calculated cumulative distributive function:
\[
F(t) = \int_0^t f(t)dt.
\]
Figure 4 shows the cumulative residence time distribution.

Fig. 3 Three-dimensional view of refined mesh.

Fig. 4 Cumulative residence time distribution vs. normalized residence time.

Conclusion
Introducing a novel technique based on the fictitious domain method and 3D mesh refinement procedures. Ensuring continuity for non-conformal elements is enforced by using a Lagrangian multiplier, shown to be accurate and well adapted to the simulation of fluid flow in twin-screw extruders. Residence time distributions were determined as a way to study aspects of distributive mixing.

References: