Modal decoupling of a lightweight motion stage using algebraic constraints on the decoupling matrices

Published in:
Proceedings of the 31st Benelux Meeting on Systems and Control, 27-29 March 2012, Heijden, the Netherlands

Published: 01/01/2012

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 29. Dec. 2018
Modal Decoupling of a Lightweight Motion Stage Using Algebraic Constraints on the Decoupling Matrices

1Department of Mechanical Engineering, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2R&D ASML Netherlands B.V., P.O. Box 324, 5500 AH Veldhoven, The Netherlands

Email: e.silvas@tue.nl

1 Introduction

Current trends towards lightweight positioning systems from the lithography industry demand the usage of advanced servo control design methods that can actively control the unavoidable flexibilities. One solution is to use over-actuation, [1], and over-sensing and to control the rigid and flexible modes of the system in a decentralized manner.

Compared with the traditional decentralized control approach, in this work a more effective and a less conservative way towards a decentralized modal control is investigated for a 6 degrees of freedom motion stage. This paper describes a method to compute decoupling matrices \(\Phi_u \) and \(\Phi_x \) (Figure 1) that decouple the system in its rigid body(RB) modes and a number of non-rigid body(NRB) modes. Alignment and scaling of the rigid body modes are ensured. The decoupling enables the design of multi-loop SISO controllers, \(K \), for the decoupled MIMO system, \(G_d \).

\[
G_m(s) = \sum_{i=1}^{n} C_m(sI - A_m)^{-1} B_{mi}, \tag{1}
\]

where \(A_m, B_m \) and \(C_m \) refer to the state space matrices in modal coordinates with compatible dimensions and \(n \) is the number of degrees of freedom of the system. When only positioning sensors are used the term \((sI - A_m) \) will be diagonal.

In theory \(\Phi_u = B_m^{-1} \) and \(\Phi_x = C_m^{-1} \), but this is not possible since in practice the number of modes is larger than the number of inputs and outputs. Typically the RB modes are decoupled and controlled for high-feedback gains and the NRB modes critical for performance are damped using active vibration control methods.

The key idea is to decouple the modal system using geometric knowledge and by imposing a set of constrains. Therefore, to decouple for each mode \(i \) in terms of the modal input, the following equations should hold for the input matrix \(\Phi_u \):

\[
B_{mi} \cdot \Phi_u = \begin{cases} 1 & \text{for } i = j, \\ 0 & \text{for } i \neq j. \end{cases} \tag{2a}
\]

\[
B_{mi} \cdot \Phi_u = 0 \quad \text{for } i \neq j. \tag{2b}
\]

where \(i = 1...n_d \) represents the \(i \)th row of \(B_m \) and \(j = 1...n_d \) represents the \(j \)th column on \(\Phi_u \). Equation (2a) ensures that the mode \(i \) is controllable. By following the same approach the output decoupling matrix \(\Phi_y \) can be found.

3 Results and conclusions

The proposed approach is applied to an experimental setup that has 14 inputs and 14 outputs. The traditional approach, 6 RB decoupled modes (case 1) is compared with the approach described in this paper, where beside the 6 RB also 7 NRB modes have been considered for decoupling (case 2). The results in Figure 2 clearly show a better decoupling (especially in low frequencies). This can enable the achievability of better servo-performance with control.

References
