From ductile damage to ductile fracture in forming processes
Mediavilla Varas, J.; Peerlings, R.H.J.; Geers, M.G.D.

Published: 01/01/2004

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
From ductile damage to ductile fracture in forming processes

J. Mediavilla, R.H.J. Peerlings, M.G.D. Geers
Eindhoven University of Technology, Section of Materials Technology

Introduction
In metal forming processes such as blanking and cutting, the material undergoes large deformations, leading to ductile failure, which is characterized by the formation of voids and the eventual formation of macroscopic cracks. In this research project these phenomena are analyzed from a macroscopic point of view.

Gradient elastoplastic damage model
The behaviour of the homogenized material (voids plus matrix) is obtained by assuming strain equivalence [1] with the elastoplastic matrix. A localization limiter is used to ensure mesh independent results, which leads to a coupled problem [2]. The damage evolution accounts for the fact that ductile failure is triggered by positive triaxiality states and plastic deformation [3].

Simulations on notched bars show that a higher triaxiality, i.e. small notch radius, translates in a smaller ductility. This is in accordance with experiments.

Industrial applications
To model industrial applications, e.g. blanking, the coupled problem, i.e. equilibrium plus nonlocal averaging, is implemented readily in an operator-split (staggered) manner. Adaptive remeshing is used for three purposes: (i) to trace the crack paths, (ii) to prevent large element distortions, (iii) to capture the large gradients in the localisation regions.

References: