Zur Optimierung des Gleichdralldoppelschneckenkneters o(de)r: Towards mixing analysis of twin screw extruders

Citation for published version (APA):

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 09. Apr. 2019
Problem definition
In industry, production speed is an important issue. For polymer processing equipment this means that the time for polymer granulate to melt, mix with additives or colourants and homogenise should decrease.

Current approach
Flow fields in complex polymer processing equipment can be determined by finite element methods. However, once velocity field and pressure drop are computed [1, 2], the question remains what to do with the results. Currently, results are mainly used to plot particle trajectories, as e.g. shown in figure 1.

Approach suggested
Instead of computing trajectories for a (huge) number of particles, the boundaries of a set of smaller domains, that together completely fill the flowdomain or a cross section of it, are tracked for a characteristic time or length of the flow and then compared to the original subdivision. A transport or mapping matrix is constructed that describes the transformation of the original grid to the tracked and deformed grid. This approach [3], has proven to give good results for a number of 2D and 3D flows as e.g. the lid driven cavity (fig. 2) in two and three dimensions, and the multiflux static mixer (fig. 3).

Conclusions and future work
The mapping method is the only method sofar that allows for a fast and feasible analysis of mixing flows. Obviously, the principal challenge in the analysis of mixing in twin screw extruders lies in the determination and interpretation of mapping matrices for various elements as shown in the screws along the side.

References: