Multi-scale computational homogenization

Kouznetsova, V.; Geers, M.G.D.; Brekelmans, W.A.M.

Published: 01/01/2002

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 18. Dec. 2018
Multi-scale computational homogenization

V. Kouznetsova, M.G.D. Geers, W.A.M. Brekelmans
Netherlands Institute for Metals Research, Eindhoven University of Technology, Department of Mechanical Engineering

Introduction
Most of the materials produced and utilized in industry are heterogeneous on one or another spatial scale. The adequate modelling of manufacturing processes and the product performance requires the solution of a multi-scale problem.

Figure 1 Examples of metallic heterogeneous microstructures.

☐ The aim is to develop a computational homogenization technique for the multi-scale modelling of non-linear deformation processes of multi-phase materials.

Computational homogenization
Computational homogenization is based on the solution of two nested boundary value problems, one for the macroscopic and one the microscopic scale. Thus, the stress-strain response at a macroscopic material point is obtained from the behaviour of the underlying microstructure.

First-order
☐ The classical first-order computation scheme [1], see Fig. 2, fits entirely in a standard local continuum mechanics framework.
☐ Valuable tool in retrieving the macroscopic mechanical response of non-linear multi-phase materials.
☐ However, the applicability is generally restricted to cases where the characteristic size of the material microstructure is negligible with respect to the spatial variations of the macroscopic deformation field.

Second-order
In order to deal with the limitations, a novel second-order computational homogenization procedure leading to a higher-order continuum on the macrolevel has been proposed [2], see Fig. 2.

☐ The relevant microstructural length scale is directly incorporated into the description on the macrolevel.
☐ This approach allows to describe certain phenomena that cannot be addressed by the first-order scheme, such as (geometrical) size effects, macroscopic localization and surface layer effects.

Examples

Macroscopic localization
Tension of a voided plate (as a heterogeneous configuration) with a material imperfection, which triggers the development of a localization band, is analyzed using the first-order and the second-order computational homogenization scheme.

Figure 3 The first-order computational homogenization analysis results in a mesh dependent strain distribution (a) and (b). The second-order scheme leads to a localization band, which is independent of the mesh size (c) and (d).

Boundary shear layer
Simple shear of a thin heterogeneous strip is considered. The constraints on the top and bottom surfaces are modelled using higher-order boundary conditions (zero shear strain).

Figure 4 Shear distribution along the height of the strip (left) and overall shear stress-strain response (right) for several ratios of the strip thickness H to the microstructural length scale d. Boundary layers with a vanishing shear are clearly observed (left), giving rise to a size effect (right).

Figure 5 Microstructural deformation patterns in the sheared macroscopic thin layer for $H/d = 5$ (left) and $H/d = 50$ (right).

Conclusions
Computational homogenization provides a versatile strategy to establish micro-macro structure-property relations based on the behaviour of multi-phase microstructures.

References: