On the performance of static mixers

M. K. Singh, P. D. Anderson, and H. E. H. Meijer
Materials Technology, Eindhoven University of Technology

Introduction

The performance of various static mixers, the Kenics mixer, the Ross Low-Pressure Drop (LPD) and Low-Low-Pressure Drop (LLPD) mixer, the standard Sulzer SMX mixer, and the recently developed new designs of the SMX in our group, known as \(\text{SMX}(n) \) [1] (see Fig 1), is compared using both energy consumption, measured in terms of the dimensionless pressure drop, and compactness, measured as the dimensionless length, as criteria [2].

Qualitative comparison

Figure 2 reveals qualitative profiles for different designs.

![Figure 2: Mixing profiles for different industrial mixers.](image)

Quantitative comparison

Figure 3 (a) and (b) show a quantitative comparison using energy consumption (measured in terms of dimensionless pressure drop) and compactness (measured in terms of dimensionless length).

![Figure 3: Quantitative comparison of mixing performance of various static mixers using cross-sectional flux-weighted intensity of segregation versus (a) dimensionless pressure drop \(\Delta P^* \) and (b) dimensionless length \(l/D \). If \(I_d=1 \), no mixing at all, if \(I_d=0 \), complete mixing.](image)

Conclusions

1. The Kenics is the most energy efficient motionless mixer, shortly followed by the LPD and the simplest versions of the new design series, the \(\text{SMX}(n) (n, N_p, N_x) = (1, 1, 3) \).
2. The \(\text{SMX}(n) (n, N_p, N_x) = (4, 7, 12) \) is the most compact mixer, shortly followed by the \((3, 5, 9)\) versions.

References:
