Ultrasound elastography of abdominal aortic aneurysms

Published: 01/01/2011

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 01. Jan. 2019
Ultrasound Elastography of Abdominal Aortic Aneurysms

* In cooperation with Maastricht University Medical Center

Aim of our Research

The aim: Growth prediction of Abdominal Aortic Aneurysms (AAA) by combining functional ultrasound imaging (US) and patient-specific finite element (FE) modeling.

Results

![Fig. 3: Young’s modulus (E) for normals (left) and AAA patients (right).](image)

Methods

2D ultrasound imaging (Esaote) was performed in 10 healthy volunteers and 20 AAA patients (I). For five patients, 3D (+t) MRI data were available for comparison (II). The Young’s modulus (E) was estimated from the raw US and MRI data. The US data were processed using a 2D tracking algorithm. Volume over time was estimated by assuming axis-rotational symmetry. MRI data were processed with Hemodyn (Philips).

Conclusion

Non-invasive assessment of the E-modulus *in vivo* distinguishes patients from normals (I). The 2D US results are in good correspondence with MRI (II) but seem low compared to 3D US (III). A next step will be combining 3D geometry, motion and material properties into patient-specific FE models. Stress-strain measurements yield elastin and collagen properties (IV). The latter might enable growth prediction based on elastin degradation or collagen deposition in the future.