Mechanical testing of an artificial intervertebral disc

van den Broek, P.R.; Huyghe, J.M.R.J.; Ito, K.

Published: 01/01/2007

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Mechanical Testing of an Artificial Intervertebral Disc

P.R. van den Broek, J.M. Huyghe, K. Ito
Eindhoven University of Technology, Department of Biomedical Engineering

Introduction
Low back pain is a widespread problem associated with degeneration of the intervertebral disc (Fig 1). When surgical intervention is needed, fusion of adjacent vertebrae can relieve pain. However, fusion leads to loss of motion, which may accelerate the degeneration of adjacent discs. An alternative to fusion is a disc prosthesis or artificial intervertebral disc (AID).

Artificial Intervertebral Disc
An AID should relieve pain, provide physiological motion, shock absorption, and stability. Current AID designs (Fig 2) only aim on restoring motion and do not mimic the material behavior of the natural disc. Encountered problems are migration, subsidence, wear, and increased facet joint stress. Available studies on the success rate are criticized for their methodologies and current results are comparable with fusion [3].

Material and methods
The AID was tested under static and dynamic loading in axial compression, in 0.15M salt solution at 37°C (based on ASTM F2346-05) using a 858 Mini Bionix test system (MTS Systems Corporation, USA). Static loading was applied with 2kN/s in 6 steps up to 12kN. In Dynamic loading every 24h were divided in 16h of compression and 8h of rehydration. 10 million load cycles were applied at 10Hz, between 0.2-2kN or 0.6-6kN. Stiffness was calculated by dividing force by displacement.

Results
The new AID withstood loads up to 12kN without damage (Fig 3), which is more than the required maximal failure load of 8kN [2]. A stiffness was measured between 2-14kN/mm, which is comparable to the natural disc.

Conclusion and Future Work
A new concept for an AID was tested, which showed promising results under static and dynamic loading. Experiments will be continued and extended with multiple load cases and wear testing. A finite element analysis will be performed to investigate the influence of implanting the AID on the kinematics of a motion segment compared to the intact situation.

References: