Exergy analysis: the effect of relative humidity, air temperature and effective clothing insulation on thermal comfort

Citation for published version (APA):

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
First results available on the relation between human-body exergy consumption rates and subjectively assessed thermal sensation showed that the minimum human body exergy consumption rate is associated with thermal sensation votes close to thermal neutrality, tending to slightly cool side of thermal sensation.

By applying the exergy concept to the built indoor environment, additional results are going to be explored. By using the data available so far of operative temperature (t₀), the human body exergy consumption rates increase as to increases above 24°C or decreases below 22°C at relative humidity (RH) lower than 50%. While, at 85% of RH, the human-body exergy consumption rates decrease when to is increasing above 24 °C.

IV.6. Exergy Analysis: The Effect of Relative Humidity, Air Temperature and Effective Clothing Insulation on Thermal Comfort

M. DOVJAKᵃ, A. SIMONEᵇ, J. KOLARIKᵃ, H. ASADAᶜ, T. IWAMATSUᵇ, L. SCHELLENᵃ, M. SHUKUYAᵃ, B. W. OLESENᵇ, A. KRAINERᵃ

ᵃ Faculty of Civil and Geodetic Engineering Ljubljana, University of Ljubljana, Chair for Buildings and Constructional Complexes, Jamova cesta 2, 1000 Ljubljana, Slovenia, Email: mdovjak@fgg.uni-lj.si
ᵇ International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Nils Koppels Allé Building 402, 2800 Lyngby, Denmark, Email: asi@byg.dtu.dk; jakol@byg.dtu.dk; bwo@byg.dtu.dk
ᶜ Architech Consulting Co., 1-22-4 Taito, Taito-ku, Tokyo 110-0016, Japan, Email: h.asada@archi-tec.jp
ᵈ Central Research Institute of Electric Power Industry, Japan, Email: iwamatsu@tmu.ac.jp
ᵉ Eindhoven University of Technology, Faculty of Architecture, Building and Planning, Den Dolech 2, 5612 AZ Eindhoven, Netherlands, Email: L.Schellen@tue.nl
ᶠ Laboratory of Building environment, Tokyo City University, 3-3-1 Ushikubo-Nishi, Tsuzuki-ku, Yokohama 224-8551, Japan, Email: shukuya@tcu.ac.jp

Exergy analysis enables us to make connections among processes inside the human body and processes in a building. So far, only the effect of different combinations of air temperatures and mean radiant temperatures have been studied, with constant relative humidity in experimental conditions. The objective of this study is to determine the effects of different levels of relative humidity (RH), air temperature (Ta) and effective clothing insulation on thermal comfort conditions from the exergetic point of view. The analyses take into consideration the available data from the study by Toftum et al. (1998). The effect of different levels of RH, Ta and effective clothing insulation on human body exergy balance chain, changes in human body exergy consumption rate (hbExCr) and predicted mean vote (PMV) index were analyzed. The results show that thermal comfort conditions do not always result in lower hbExCr as it was proven in previous studies. Variations in effective clothing insulation, Ta and RH affect individual parts of human body exergy balance chain with an important effect on hbExCr. At hot and dry conditions the hbExCr is the largest while at hot and humid conditions it is the minimal. Hot and dry and cold and dry conditions have similar hbExCr. The difference appears if the whole human body exergy balance chain is taken into consideration. To maintain comfortable conditions it is important that exergy consumption and stored exergy are at optimal values with a rational combination of exergy input and output.