Determination of 16O and 18O sensitivity factors and charge-exchange processes in low-energy ion scattering

Citation for published version (APA):

DOI:
10.1063/1.4758699

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 19. Jan. 2020
Determination of 16O and 18O sensitivity factors and charge-exchange processes in low-energy ion scattering

H. Téllez,¹,a R. J. Chater,¹ S. Fearn,¹ E. Symianakis,¹ H. H. Brongersma,¹,² and J. A. Klínér¹
¹Department of Materials, Imperial College, SW7 2AZ London, United Kingdom
²Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 25 July 2012; accepted 28 September 2012; published online 10 October 2012)

Quantitative analysis in low-energy ion scattering (LEIS) requires an understanding of the charge-exchange processes to estimate the elemental sensitivity factors. In this work, the neutralization of He$^+$ scattered by 16O-exchanged silica at energies between 0.6 and 7 keV was studied. The process is dominated by Auger neutralization for $E_i < 0.8$ keV. An additional mechanism starts above the reionization threshold. This collision-induced neutralization becomes the dominant mechanism for $E_i > 2$ keV. The ion fractions P^+ were determined for Si and O using the characteristic velocity method to quantify the surface density. The 18O/16O sensitivity ratio indicates an 18% higher sensitivity for the heavier O isotope. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4758699]

\[
\eta_i = P_i^+ \times \frac{d\sigma_i}{d\Omega},
\]

where P_i^+ is the ion fraction of the backscattered noble gas ions and $(d\sigma_i/d\Omega)$ is the differential scattering cross-section, which can be calculated for the LEIS regime with a screened Coulomb potential using the Molière approximation to the Thomas-Fermi potential (TFM) or the “universal” potential (ZBL). ²

The ion fraction P_i^+ represents both the survival and the reionization probabilities of the scattered ion after the collision with the surface and is dependent on the charge-exchange processes taking place during the ion-atom interaction. Unfortunately, the charge-exchange processes are not fully understood making the prediction of P^+ very difficult. ² Several mechanisms can lead to the primary ion neutralization, namely, Auger neutralization (AN), resonant neutralization (RN), and collision-induced neutralization (CIN). Additionally, the neutralized ion can be reionized during the close encounter (via electron promotion, which is the reverse process of CIN) or during the outgoing trajectory via resonant ionization (the reverse process of RN). ² While AN is often assumed to be the predominant mechanism at low energies (E_i in the order of a few eV),²,⁶,¹⁰ additional processes may contribute to the ion neutralization/reionization at higher energies (e.g., RN becomes the predominant neutralization mechanism for low work function surfaces).²,⁹,¹¹,¹² Since several processes may occur during the scattering event, a quantitative prediction of the neutralization behaviour (e.g., P^+ dependence on the primary ion energy) is required for the selection of the optimal experimental parameters to perform a reliable quantitative LEIS analysis while avoiding time-consuming calibrations.²,⁶,¹³,¹⁴

In this work, we used the characteristic velocity method in order to study the neutralization behaviour of He$^+$ scattered from 16O and 18O and to determine the elemental sensitivity factors. A silica sample has been chosen as a reference material since the preferential sputtering can be neglected at the low ion doses used for the analysis.¹⁵

Low-energy ion scattering (LEIS) is a very powerful tool for the analysis of the elemental composition of the surface of a wide range of materials including insulators and conducting samples. It has been applied for the study of different processes in which the outermost atomic layer drastically affects the material functionality, such as catalysts, semiconductors, electronics, and solid oxide fuel cells.¹–⁵ The capability of LEIS to selectively probe the first monatomic surface relies on the very effective neutralization of the noble gas ions being scattered from inner layers, which assures that the signal originates from the outermost surface since only scattered ions are detected.⁶ This surface sensitivity represents the main advantage of LEIS over other surface analysis techniques (e.g., secondary ion mass spectrometry (SIMS), x-ray photoelectron spectroscopy (XPS), or Auger electron spectroscopy (AES)) where the information comes from the first 3 to 20 atomic layers (depth of about 1–10 nm).

In LEIS measurements noble gas ions (e.g., He$^+$, Ne$^+$, and Ar$^+$) are directed onto the sample surface with energies ranging from 0.5 to 10 keV, being scattered by the surface atoms in a binary collision process. The backscattered ions are analyzed providing isotope resolved information of the surface composition. The yield of ions scattered over a given scattering angle θ for an element i is a measure of the atomic surface concentration N_i and can be expressed as⁶

\[
S_i = \frac{I_p}{e} \times t \times \zeta \times R \times \eta_i \times N_i,
\]

where I_p is the primary ion beam current, e is the elementary charge, t is the acquisition time, ζ is the instrumental factor depending on the analyzer transmission and the detector efficiency, R is the roughness factor, N_i is the surface density of the element i (atoms/cm2), and η_i is the elemental sensitivity factor, given by
Si samples (Dynamit Nobel Silicon, Ltd) were subjected to different annealing treatments in dry \((^{18}\text{O}_2)\) and wet \((^{2}\text{H}^{18}\text{O})\) atmospheres in order to grow a thick \(\text{SiO}_2\) layer (around 2\(\mu\)m) with different \(^{18}\text{O}\) isotopic concentrations. A detailed description of the annealing methodology can be found elsewhere.\(^{16}\) The samples were analyzed by ToF-SIMS (ION-TOF GmbH, Germany) in order to check the isotopic composition, confirming the 3\% and 97\% \(^{18}\text{O}\) enrichment of the grown \(\text{SiO}_2\) layers.

The LEIS experiments were performed in a Qtac\(^{100}\) instrument (ION-TOF GmbH) at a base pressure of \(\sim 3 \times 10^{-10}\) mbar (which increases to the \(10^{-8}\) mbar range during the analysis due to the flux of noble gas). The instrument is fitted with a double toroidal energy analyzer (DTA) which collects the scattered ions at a scattering angle of 145\(^\circ\) from all azimuth angles. This large solid angle of acceptance combined with parallel energy detection allows a reduction in the surface damage due to the improved sensitivity compared to conventional LEIS instruments.\(^{1,17}\) The samples were analyzed using a \(\text{He}^+\) primary ion beam directed perpendicularly to the target surface at pass energies \(E_p\) (1 keV and 3 keV).

The samples were successively cleaned in acetone and methanol for 10 min each in an ultrasonic bath. Once the samples were introduced to the UHV chamber, low-energy sputtering was performed by 2 keV \(\text{Ar}^+\) bombardment at 59\(^\circ\) to remove any further surface contamination.

The sensitivity and separation of the \(^{18}\text{O}\) and \(^{16}\text{O}\) peaks is strongly affected by the initial energy of the primary ions and the scattering angle. The separation between the final energies \((E_f)\) for scattering by \(^{18}\text{O}\) and \(^{16}\text{O}\) atoms decreases linearly with the initial energy \((E_i)\). At lower \(E_i\) the relative peak width \((\text{width divided by } E_i)\) increases, since the importance of inelastic processes increases. The experimental peak broadening has been reduced by using a lower \(E_p\) (1 keV instead of 3 keV) for low \(E_i\), which gives a better separation of the \(^{18}\text{O}\) and \(^{16}\text{O}\) peaks (Fig. 1).

The \(^{18}\text{O}\) and \(^{16}\text{O}\) scattering yields for 100%-enriched \(\text{SiO}_2\) samples at the different \(E_i\) were determined by extrapolation of the straight line obtained when plotting \(^{18}\text{O}\) versus \(^{16}\text{O}\) ion yields for the 97\% and 3\% \(^{18}\text{O}\)-exchanged \(\text{SiO}_2\) samples. As observed in Fig. 2, the higher yields are obtained when reducing the \(\text{He}^+\) initial energy \((E_i \leq 800\text{ eV})\). In addition, the \(^{18}\text{O}/^{16}\text{O}\) sensitivity ratios show 18\% higher sensitivity for \(^{18}\text{O}\) compared to \(^{16}\text{O}\) atoms (slope in Fig. 2). The higher \(^{18}\text{O}\) sensitivity is due to the higher \(^{18}\text{O}\) scattering cross-sections, which are between 3.1 and 4.2\% higher than for \(^{16}\text{O}\) as \(E_i\) decreases from 7 to 0.6 keV, and the different ion fractions \(P^+\).

As mentioned previously, \(P^+\) is characteristic of each ion-atom combination and will depend on the different charge exchange processes that are involved during the ion-target interaction. The energy dependency of the neutralization must be known in order to determine the elemental sensitivity factors, \(\eta_t\). In this work, we use the characteristic velocity method based on Hagstrum’s model to determine the neutralization rate. In this model, the neutralization rate is assumed to be dependent only on the distance between the ion and the target surface.\(^6\)

According to this method, the ion fraction is given by

\[
P^+ = \exp\left(-V_c\left(\frac{1}{v_i} + \frac{1}{v_f}\right)\right),
\]

where \((1/v_i + 1/v_f)\) is the sum of the reciprocal velocities of the incoming and outgoing primary ion, respectively, and \(V_c\) is the characteristic velocity which is a measure of the neutralization probability. Both the characteristic velocity and the definition of the reciprocal velocity depend on the neutralization mechanism involved during the ion-target interaction.\(^6\)

By combining Eqs. (1)–(3) and taking natural logarithms it can be found that

\[
\ln\left(\frac{S_i}{d\sigma_i/d\Omega}\right) = \ln(\epsilon') + \ln(N_i) - V_c\left(\frac{1}{v_i} + \frac{1}{v_f}\right).
\]

A straight line is expected when plotting the logarithm of the LEIS signal (corrected for the scattering cross-section estimated using the TFM potential approximation) as a function of the reciprocal velocities, as long as one single neutralization mechanism dominates the process. The slope of the line is the
characteristic velocity, which can be later used to calculate \(P_\pi^+ \) according to Eq. (3). However, when more than a single neutralization/ionization mechanism is involved, this linear relationship no longer holds. Fig. 3 shows these plots for \(^{16}\text{He} \) scattering by \(^{16}\text{O}, ^{18}\text{O}, \) and \(\text{Si} \) in the energy range of 0.6-7 keV for SiO\(_2\), correcting the ion yields for 100%-enriched Si\(^{16}\text{O}_2\) and Si\(^{18}\text{O}_2\). The characteristic velocities (\(V_c \)) and the intercepts (a) for the different \(E \) ranges found for the different atoms involved are summarized in Table I.

Each neutralization mechanism occurs at a specific interaction distance, and, hence, it is possible to predict the charge-exchange process involved by taking into account the distance of the closest approach (\(R_{\text{min}} \)). For this study, we only consider AN and CIN mechanisms, since RN will be predominant for noble gas ion scattering on low work function surfaces, usually in the order of 2 eV.\(^{9,18}\) AN requires a close overlap of the ion and target orbitals for the effective transfer of a valence electron of the surface atom to the K-shell of the He\(^+\) ion\(^{10}\) and will take place at a distance of about 1-2 Å.\(^{19}\) Conversely, CIN occurs during the close encounter at shorter distances (~0.5 Å), involving the interaction of the ion ground state and the core levels of the target atom.\(^{20,21}\)

As observed in Fig. 3, the expected linear relationship according to Eq. (4) is held for the Si atoms, indicating that a single neutralization/reionization process is taking place throughout the whole \(E \) range. As reported by Mikhailov et al. for the scattering of He\(^+\) on Si,\(^{12}\) the dominant charge exchange process at \(E_i \) of 1-3.5 keV is CIN, with high \(V_c \) values compared to those elements showing AN. For a head-on collision at \(\text{E}_{\text{th}} = 300 \text{ eV} \) (corresponding to the reionization of He\(^+\) scattering by Si atoms\(^{8}\)) the \(R_{\text{min}} \) is 0.34 Å. At higher \(E_i \) and shorter \(R_{\text{min}} \) the channel for reionization is open, which implies that also the reverse process (CIN) is possible. Since CIN is much more effective than reionization, this leads to a net decrease in the LEIS signal (higher \(V_c \)). For oxygen there is more than one charge-exchange process, as indicated by the slope change at \(E_i \geq 1 \text{ keV} \). At higher \(E_i \) and shorter \(R_{\text{min}} \), the channel for reionization is open, which implies that also the reverse process (CIN) is possible. Since CIN is much more effective than reionization, this leads to a net decrease in the LEIS signal (higher \(V_c \)).

Additionally, the characteristic velocity method can be applied to estimate the relative surface density of the species.

![Figure 3](image_url)
Fig. 3. Natural logarithm of the LEIS signal (peak areas) corrected for the differential cross-sections (\(\sigma \)) versus the sum of the reciprocal velocities before and after scattering for He\(^+\) scattered by SiO\(_2\). The yields were extrapolated to 100% \(O \) isotopic composition in the different samples. (a) \(^{16}\text{O} \) in 100%-enriched Si\(^{16}\text{O}_2\), (b) \(^{18}\text{O} \) in 100%-enriched Si\(^{18}\text{O}_2\), and (c) Si in both SiO\(_2\) samples. Circles: \(E_i = 3 \text{ keV} \); squares: \(E_i = 1 \text{ keV} \).

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Atom</th>
<th>(E_i) range (keV)</th>
<th>(a)</th>
<th>(V_c) ((\times 10^3 \text{ m/s}))</th>
<th>(r^2)</th>
<th>((N_{\text{Oi}}/N_{\text{Si}})_{\text{Surf}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN</td>
<td>Si</td>
<td>(E_i \leq 7.0)</td>
<td>15.78 (±0.06)</td>
<td>2.91 (±0.06)</td>
<td>0.99404</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(^{16}\text{O})</td>
<td>(E_i > 2.0)</td>
<td>16.40 (±0.16)</td>
<td>2.26 (±0.29)</td>
<td>0.96737</td>
<td>1.86 (±0.19)</td>
</tr>
<tr>
<td></td>
<td>(^{18}\text{O})</td>
<td>(E_i > 2.0)</td>
<td>16.54 (±0.15)</td>
<td>2.67 (±0.28)</td>
<td>0.97880</td>
<td>2.14 (±0.19)</td>
</tr>
<tr>
<td></td>
<td>O (mean)</td>
<td>(E_i > 2.0)</td>
<td>16.47 (±0.16)</td>
<td>2.47 (±0.28)</td>
<td>...</td>
<td>2.00 (±0.19)</td>
</tr>
<tr>
<td>AN</td>
<td>(^{16}\text{O})</td>
<td>(E_i < 0.8)</td>
<td>16.40 (±0.16)</td>
<td>1.88 (±0.03)</td>
<td>0.99998</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(^{18}\text{O})</td>
<td>(E_i < 0.8)</td>
<td>16.54 (±0.15)</td>
<td>1.91 (±0.02)</td>
<td>0.99999</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>O (mean)</td>
<td>(E_i < 0.8)</td>
<td>16.47 (±0.16)</td>
<td>1.90 (±0.02)</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
under investigation if \(V_e \) is constant over the energy range on which the extrapolation is based.\(^{18}\) The relative surface density can be estimated by extrapolating Eq. (4) for \(v \rightarrow \infty \), as for infinite velocities there is no time for neutralization and the ion fraction equals unity (\(P^+ = 1 \)). The relative surface density of O and Si is given by

\[
\ln \left(\frac{N_o}{N_S} \right) = \ln \left(\frac{S_o / \sigma_o}{S_i / \sigma_i} \right) e^{-\infty} .
\] (5)

According to Eq. (5), the surface density was found to be O:Si = 2.14 ± 0.19 and 1.86 ± 0.19 in 100% enriched \(^{18}\)O\(_2\) and \(^{16}\)O\(_2\), respectively. These results confirm that any preferential sputtering of O during the initial cleaning stage of the sample surfaces can be neglected (within 10% of experimental error). By assuming a silica density of 2.32 g/cm\(^3\), the atomic surface densities in silica correspond to 0.81 and 1.60 \(\times 10^{15} \) atoms/cm\(^2\) for Si and O atoms, respectively.

Once the neutralization behaviour is known and characterized by the corresponding \(V_e \) values, the \(P^+ \) can be calculated for different \(E_i \) using Eq. (3), as shown in Fig. 4, and used to determine the \(^{18}\)O and \(^{16}\)O sensitivity factors (\(\eta_i \)).\(^{13}\)

These values can be used as a reference to perform quantitative analysis on other \(^{18}\)O-exchanged materials, provided that there are no matrix effects. Previous investigations of \(^{3}\)He\(^+\) scattering by polydimethylsiloxane (PDMS) at energies from 800 eV to 5 keV showed a change in \(V_e \) for O atoms in the E range of 800-1800 eV indicating a change in the dominant neutralization mechanism,\(^{22}\) in agreement with the present work. These results suggest that matrix effects can be ruled out for \(^{3}\)He\(^+\) scattering by O atoms for \(E_i > 2 \) keV since CIN mechanism takes place at close distances (interaction with the core electrons) and does not involve the surrounding atoms in the surface.

In this study, the neutralization behaviour of \(^{3}\)He\(^+\) scattering on \(^{18}\)O-exchanged silica samples was found to be dependent on the different charge-exchange processes taking place in the energy range under study. The characteristic velocity method has been applied to determine the influence of the ion velocity on the \(^{3}\)He\(^+\) ion fractions (\(P^+ \)). For O atoms, the survival/reionization probability is dominated by Auger neutralization taking place at long ion-atom distances at low \(E_i \leq 0.8 \) keV. Conversely, collision-neutralization dominates the process at \(E_i > 2 \) keV. At intermediate \(E_i \) (1–2 keV), both charge-exchange processes occur simultaneously. Furthermore, the neutralization efficiency of the CIN mechanism was found to be higher than in AN, according to their \(V_e \) values. For Si, the charge-exchange process is based on a CIN mechanism for 0.6 keV < \(E_i < 7 \) keV. The elemental surface density of \(^{18}\)O-exchanged SiO\(_2\) samples could be estimated by the characteristic velocity method for \(E_i > 2 \) keV, confirming that there is no preferential sputtering of O at the low doses used during the analysis as previously reported by Pitts and Czanderna.\(^{15}\) Since the CIN results from interaction with the core electrons of the oxygen atoms, no matrix effects are expected, and hence the \(^{18}\)O and \(^{16}\)O sensitivity factors at \(E_i \) from 2–7 keV can be used as a reference for the quantitative analysis of other \(^{18}\)O-exchanged oxide materials. The \(^{18}\)O/\(^{16}\)O sensitivity ratio shows a 18% higher sensitivity for the heavier O isotope.

This research was supported by a Marie Curie Intra European Fellowship (HT) within the 7th European Community Framework Programme the European Union (IonBeatHeteroMat, PIEF-GA-2010-274999).

![Image](https://example.com/image.png)