Toughening of transparent amorphous systems via self-assembly of block copolymers

Citation for published version (APA):

Document status and date:
Published: 01/01/2002

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

• You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 07. May. 2020
Toughening of transparent amorphous systems via self-assembly of block copolymers

Eindhoven University of Technology, Department of Mechanical Engineering

Introduction
Modification of rigid glassy polymers by introduction of elastomeric core-shell particles is very promising to obtain nanostructured polymers with a high fracture toughness. The elastomeric core should cavitate easily and the hard shell makes the particle compatible with the matrix material. So far, the development of tough heterogeneous amorphous systems has been focused on systems based on linear polymers. For (slightly) cross-linked polymer systems, however, more effort is needed to generalize the concept of toughening by introduction of these elastomeric particles. Once a better understanding is obtained on how to control the bulk morphology, the deformation mechanisms of thin films can be studied and compared to the bulk. On impact, the energy can be absorbed by 2 mechanisms, being shear yielding and cavitation (figure 1a and b).

Material preparation
In order to obtain polymer micelles, di- and triblock copolymers of narrow molecular weight distribution are synthesized via ATRP. These micelles should at least have such properties that one block is soluble in the initial resin and that another block is not soluble, and in solution they should stay present as micelles at all times under curing. An example of a SAXS measurement involving hexagonally packed cylinders is represented by figure 2.

Results
The morphology of the block copolymers in solution is studied by time-resolved SAXS measurements, in order to determine the optimal reaction conditions for curing. In Figure 3 the scattering pattern is depicted for a triblock copolymer at 20 wt% in MMA during a heating run. At low temperatures a micellar morphology is present. During heating from -50 °C to 100 °C the ordering decreases gradually and disappears at approximately 10 °C.

Conclusions
- Micellar structures present before reaction can be preserved when polymerization takes place at very low temperatures.
- Synthesis of polymer systems containing micellar structures at low temperatures.
- Application of modifier toughening mechanism to (slightly) cross-linked systems.
- Obtaining variations in cross-link density by using different cross-linking agents. Especially in these systems, the presence of micellar structures before cross-linking and the stabilization during cross-linking should be emphasized.
- When morphology of bulk polymer systems is controlled, a link to thin films (coatings) can be made.

References: