Patient specific wave propagation model of the upper limb
Leguy, C.A.D.; Bosboom, E.M.H.; van de Vosse, F.N.

Published: 01/01/2007

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 21. Nov. 2018
Introduction
Arterial stiffness is an independent predictor of cardiovascular risk at an early stage [1]. The goal of this study is to investigate the feasibility of a new non-invasive method that estimates arterial mechanical properties using a reverse method.

Methods
A set of local ultrasound measurements was obtained from a group of 7 healthy volunteers to provide vessel wall distension (WD), intima media thickness (IMT) and blood volume flow (BVF) at several locations in the upper limb (Fig II). Blood pressure (BP) waveform is estimated from the WD that is stretched using the systolic and diastolic BP. An entire arterial tree model of the arm is built with 36 lumped parameter elements, each consisting of a resistance (R), compliance (C) and inductance (L).

Figure I: Reverse process using Lumped parameter model to estimate arterial mechanical properties

First Input estimation from in-vivo measurements:
BVF at the 1st segment, lumped parameters (R, L and C), end impedance.

Lumped parameter model
Output: Local BP, Local BVF

Comparison between results and measurements:

Correction of the input parameters

An iterative method (Fig I) is used to adjust the arterial parameters until the best fit is obtained between simulated and in-vivo measured pressures and BVF.

Results
The shape of the simulated BVF along the arm is comparable with the in-vivo estimations (Fig III). The global pulse wave velocity obtained from the simulated BP is similar to the estimation from the in-vivo measurements and equal to 11.5 m/s.

Figure III: (A1) Simulated and measured BVF waveforms. (A2) Simulated BP and stretched WD measurements. (B) distances from the wrist of the comparison sites.

Conclusion
The presented reverse method can be used to determine arterial stiffness. Differences between simulated and measured BP and BVF are hypothesized to come from the viscoelasticity of the arterial wall. Hence, future research will focus on a 1-D wave propagation model that incorporates wall viscoelasticity.

References: