Streamlets and branching dynamics in surfactant driven flow

Citation for published version (APA):

DOI:
10.1063/1.4739185

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Apr. 2021
Streamlets and Branching Dynamics in Surfactant Driven Flow

Submitted by
Benjamin J. Fischer, Anton A. Darhuber, and Sandra M. Troian, Princeton University

The spreading of a surface active film on a liquid layer of higher surface tension is known to produce an unusual fingering instability. Calculations based on linear stability and transient growth analysis suggest that Marangoni and capillary stresses cause dramatic variations in film thickness. These variations resemble dendritic streamlets of liquid which undergo repeated branching. Despite the similarity to viscous fingering patterns, the physical mechanisms controlling flow and instability are quite different.

In this experiment, a 10 μm layer of glycerol, with surface tension 63.4 dyn/cm, was first spin-coated onto a cleaned 10 cm silicon wafer. The wafer was raised toward a chromium-nickel wire (142 μm diameter) which was stretched between two posts and positioned in the focal plane of a microscope fitted with a 540 nm bandpass filter. The wire was coated with a film of oleic acid. Since the surface tension of oleic acid is 32.5 dyn/cm, it spontaneously spread across the surface of the glycerol rapidly thinning the liquid layer. Figures (a)–(f) depict various examples of plume or fingerlike patterns that form during the spreading process. The sequence of periodically spaced circular patterns shown in (a)–(c) are droplets of oleic acid (250 μm diameter) caused by a Rayleigh instability as the wire was lifted from the glycerol layer. Each photograph spans ~2.5 mm; the contour lines represent interference fringes. In (e), streamlets appear just ahead of the oleic drop in a region strongly thinned by the initial spreading front. The thinner the initial glycerol layer, the more ramified the spreading patterns which develop, as seen in (f).

We are grateful to the National Science Foundation CAREER (CTS-9624776) and POWRE programs (CTS-9973538), the Princeton Center for Complex Materials (DMR-9809483), and Unilever Research for financial support of our ongoing studies on Marangoni driven flow.