Gradient-enhanced damage model for quasi-brittle fracture

Citation for published version (APA):

Document status and date:
Published: 01/01/1996

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
1. Introduction

Numerical simulations based on classical continuum damage concepts show a severe dependence on both the size and orientation of the spatial discretisation. This lack of objectivity is caused by the inability of these models to correctly describe the localisation of deformation which accompanies the fracture process. It may be removed by the introduction of higher-order deformation gradients in the constitutive description. This approach has been studied in the context of quasi-brittle fracture.

2. Gradient damage model

Classical approach. In continuum damage mechanics the effect of microstructural material degeneration is represented by a continuous field variable. In quasi-brittle damage models this damage variable, D, reduces the elastic stiffness. D is zero for the initial, undamaged material and grows under the influence of mechanical loading until $D = 1$, which indicates the complete loss of material integrity. The evolution of the damage variable is governed by a scalar measure of the local strain state, the equivalent strain $\varepsilon_{eq}(\varepsilon)$.

Gradient enhancement. Instead of to the local equivalent strain, ε_{eq}, damage evolution is linked to the non-local equivalent strain, $\tilde{\varepsilon}_{eq}$, which is the solution of an additional partial differential equation. This equation, which can be derived from non-local damage theory, regularises the localisation of deformation and damage.

Model summary.

- Constitutive relation: $\sigma = (1 - D)^4H : \varepsilon$
- Equivalent strain: $\varepsilon_{eq} = \varepsilon_{eq}(\varepsilon)$
- Non-local eq. strain: $\tilde{\varepsilon}_{eq} = \varepsilon_{eq} + c \nabla^2 \tilde{\varepsilon}_{eq} = \varepsilon_{eq}$
- History variable: $\kappa(t) = \max(\kappa_0; \tilde{\varepsilon}_{eq}(\varepsilon), \varepsilon_{eq})$
- Damage evolution: $D = D(\kappa)$

Numerical treatment. The equilibrium equation and the non-local equivalent strain definition are both cast in a weak form and discretised. The resulting non-linear equations are solved simultaneously by a full Newton-Raphson procedure.

3. Numerical example

4. Application

5. Conclusions

- Mesh-objectivity with respect to element size and orientation
- Efficient and robust numerical procedure
- Model gives a gradual transition from diffuse damage to a discrete crack