Marangoni driven structures in thin film flows

Darhuber, A.A.; Troian, S.M.

Published in:
Gallery of Fluid Motion

DOI:
10.1063/1.4739213

Published: 01/01/2003

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 15. Mar. 2018
Marangoni Driven Structures in Thin Film Flows
Submitted by
Anton A. Darhuber and Sandra M. Troian, Princeton University

The spreading of a surfactant solution on a thin viscous film is dominated by Marangoni forces, which shear the liquid in proportion to the local surface concentration gradient. In conjunction with capillary forces, these tangential stresses create complex surface profiles whose fronts develop highly ramified patterns.1,2 Theoretical models3–6 indicate significant disturbance amplification and lateral undulations in regions of the film undergoing surfactant buildup by local pressure gradients or rapid film thinning. Figure 1 shows an example of such patterns for a droplet (green) of glycerol containing sodiumdodecylsulfate (SDS) spreading on a pure glycerol film (gray), which was spin coated onto a silicon wafer at 2000 rpm for 50 s at 46% relative humidity. The fingers elongate, widen laterally and exhibit repeated tip splitting. At the later times shown in Fig. 2, the spreading film has produced three unstable fronts (marked in green, yellow, and magenta). The magenta region corresponds to the thicker curved rim seen in Fig. 1(d) just ahead of the fingering front. The undulations (magenta) eventually separate into discrete droplets. Figure 3 shows the edge of a droplet of polydimethylsiloxane (PDMS) spreading on a film of tetra(ethylene glycol). The PDMS front steepens and develops periodic undulations that evolve into bulges whose amplitude increases with time. These fronts never develop the highly bifurcated structures shown in Fig. 2. Studies are underway to quantify the spreading patterns in terms of the liquid–liquid solubility, viscosity ratio, surface tension difference, and droplet to film aspect ratio.

The spin coated films ranged in thickness from 1–10 μm. Droplets formed at the tip of a very fine wire were made to contact the liquid film thereby initiating the spreading process. All images were obtained with an Olympus BX-60 microscope equipped with a bandpass filter centered at a wavelength of 535 nm. The light and dark bands represent contour lines of equal film thickness. Dark spots in the images were caused by small particulates on the dust cover protecting the spreading film.

The authors gratefully acknowledge support from the NSF (CTS and DMR), Unilever US, and DAAE-ARDEC.