Effects of Ga on the growth of InN on O-face ZnO(000(1)over-bar) by plasma-assisted molecular beam epitaxy

Citation for published version (APA):

DOI:
10.1063/1.4739941

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 15. Mar. 2019
Effects of Ga on the growth of InN on O-face ZnO(000) by plasma-assisted molecular beam epitaxy

YongJin Cho, Maxim Korytov, Martin Albrecht, Henning Riechert, and Oliver Brandt

Citation: Appl. Phys. Lett. 101, 052103 (2012); doi: 10.1063/1.4739941
View online: http://dx.doi.org/10.1063/1.4739941
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v101/i5
Published by the AIP Publishing LLC.

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors
Effects of Ga on the growth of InN on O-face ZnO(0001) by plasma-assisted molecular beam epitaxy

YongJin Cho, a,b,c Maxim Korytov, b,c Martin Albrecht, d Henning Riechert, e and Oliver Brandt f

1 Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin, Germany
2 Leibniz-Institut für Kristallzüchtung, Max-Born-Str. 2, 12489 Berlin, Germany

(Received 20 June 2012; accepted 13 July 2012; published online 30 July 2012)

We compare the structural properties of InN and In0.95Ga0.05N films grown on O-face ZnO(0001) substrates at different temperatures. The small amount of Ga results in dramatic changes in the morphology and structural properties of InN. In particular, inversion domains start to appear at higher temperatures in the In0.95Ga0.05N film. This process is a consequence of the chemical reaction of ZnO with Ga which can be prevented by choosing the substrate temperature to be 450°C or below. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739941]

The luminous efficacy of (In,Ga)N-based light-emitting diodes is known to decrease towards longer wavelength, resulting in what is commonly called “the green gap.” Different interpretations of this effect have been forwarded, but a conclusive picture has not yet emerged. What is generally acknowledged is the gradual degradation in crystal quality with increasing In content, an effect triggered by the immiscibility of (In,Ga)N and aggravated by the lack of native substrates, and the consequentially high density of structural defects.

In this context, ZnO seems to be an attractive substrate material as it is isomorphic to GaN and lattice matched to In0.2Ga0.8N. In contrast to GaN, it is commercially available in the form of single-crystalline 2 inch wafers. Yet, the growth of (In,Ga)N on ZnO was so far met with very limited success. As the primary reason for the high defect densities observed despite nominal lattice matching, several researchers identified the high chemical reactivity of the group-III metals with ZnO which results in a severe degradation of the material as it is isomorphic to GaN and lattice matched to In0.0003-6951/2012(10)/52103/4/$30.00

FIG. 1. RHEED patterns of (a)–(c) InN and (d)–(f) In0.95Ga0.05N films grown at three different Ts. The RHEED patterns were taken along the (1120) azimuth after growth.
The morphology of the In$_{0.95}$Ga$_{0.05}$N films as shown in Figs. 1(d)–1(f) is also seen to improve with increasing T_S, to a lesser degree when compared to the case of InN. In fact, a superimposed transmission pattern is observed even at 500 °C [Fig. 1(f)]. Furthermore, the transmission pattern is more pronounced when compared to the case of pure InN. We have once again used AFM to confirm that the RHEED patterns indeed reflect the actual morphology of the respective surfaces. The addition of a mere 5% of Ga thus degrades the surface morphology significantly. We note that this effect is not caused by the low diffusivity of Ga adatoms at the low substrate temperatures used in our experiment since it can be avoided by inserting a 10nm thick InN buffer layer between In$_{0.95}$Ga$_{0.05}$N and ZnO. As we will see below, the surface roughening ultimately results from a reaction between Ga and ZnO which induce a specific interface configuration.

We now turn to the structural properties of the InN and In$_{0.95}$Ga$_{0.05}$N films and discuss first the results of XRD ω scans in symmetric and quasi-symmetric (skew) geometry across the on-axis 0002 and off-axis 1012 reflections, respectively. Figures 2(a) and 2(b) show the corresponding full-width-at-half-maxima (FWHM) as a function of the substrate temperature of the films. For the InN films (Fig. 2, squares), the FWHM of the on-axis scans are evidently quite narrow with that of the sample grown at 500 °C actually approaching the value for the substrate (25 arcsec). In contrast, the off-axis scans are very broad (\approx2500 arcsec) regardless of substrate temperature. Considering the different contributions of threading dislocations (TDs) with a- and c-component having Burgers vectors b of $\langle1120\rangle/3$ and $\langle0001\rangle$ to the FWHM of 0002 and 1012 XRD ω scans, respectively, the observed results imply that the majority of TDs in the thin InN films are of a-type.

The addition of 5% Ga to InN changes this characteristic (Fig. 2, circles): the FWHM of the on-axis scans is significantly larger, while those of the off-axis scans is noticeably lower. A minimum for both on-axis and off-axis reflections is seen for the intermediate growth temperature of 450 °C. This result implies that the In$_{0.95}$Ga$_{0.05}$N films exhibit a higher and lower density of a- and c-type TDs, respectively, compared to the InN films.

Cross-sectional TEM is used to study the actual nature of the structural defects in the InN and In$_{0.95}$Ga$_{0.05}$N films. The Burgers vector b of the TDs are determined by adjusting the diffraction vector g using the $g \cdot b = 0$ criterion. To distinguish TDs of a- and c-type, we use $g = 1100$ and $g = 0002$, respectively. Note that mixed-type TDs [i.e., those of $(a + c)$-type] are visible in both diffraction conditions.

Figures 3(a) and 3(d) show cross-sectional TEM images of the InN film grown at 450 °C. No c-type TD is detected in the micrograph depicted in Fig. 3(a) which was acquired with $g = 0002$. In contrast, a high a-type TD density can be deduced from the micrograph shown in Fig. 3(d) recorded with $g = 1100$. Both of these observations are consistent with the XRD results discussed above.

The corresponding micrographs of the In$_{0.95}$Ga$_{0.05}$N film grown at 450 °C are shown in Figs. 3(b) and 3(e). Evidently, we observe a finite density of c-type TDs in Fig. 3(b) as expected from the comparatively large FWHM of the on-axis 0002 XRD ω scans (cf., Fig. 2). Likewise, a high density of TDs is detected in Fig. 3(e) as expected from the XRD results.

However, for the In$_{0.95}$Ga$_{0.05}$N film grown at 500 °C, the diffraction contrast associated to TDs is absent in Fig. 3(c); instead, a stripe-like contrast extending from the interface to the surface of the film is observed. The identification of the underlying structural defect requires a more detailed investigation.

Figure 4 displays an atomically resolved lattice image taken in a thin area of this sample. Since cations and anions

![Figure 2](image-url)
FIG. 2. FWHM of (a) 0002 and (b) 1012 XRD ω scans for the InN and In$_{0.95}$Ga$_{0.05}$N films grown at different growth temperatures T_S. The lines are guides to the eye.

![Figure 3](image-url)
FIG. 3. Two-beam dark-field cross-sectional TEM images of an InN film grown at 450 °C [(a) and (d)], of an In$_{0.95}$Ga$_{0.05}$N film grown at 450 °C [(b) and (e)], and of an In$_{0.95}$Ga$_{0.05}$N film grown at 500 °C [(c) and (f)]. Near the (1120) zone axis with $g = 0002$ [(a)-(c)] and $g = 1100$ [(d)-(f)]. The arrows in (c) indicate some of the inversion domain boundaries.
are resolved in this micrograph, the magnified insets directly visualize the opposite polarity of the left and right parts of this image. The two domains of opposite polarity are separated by an inversion domain boundary (IDB) highlighted by the dotted rectangle. IDBs formed by adjacent domains of opposite polarity appear as contrast inversion in dark-field images taken with the noncentrosymmetric reflection $g = 0002$. The interpretation of the FWHM displayed in Fig. 2 is thus not straightforward for this sample.

In order to identify the origin of the IDBs observed at high growth temperatures, we perform high-resolution TEM of the interface region as shown in Fig. 5. The arrow in the upper part of the image indicates an IDB. Distortions at the interface due the high density of misfit dislocations at the interface make it difficult to discern whether or not the IDB actually originates directly at the interface. For further discussing this issue, it is important to note that we have never observed IDs for pure InN films ($350^\circ C < T_s < 600^\circ C$) and for In$_{0.95}Ga_{0.05}$N films ($T_s < 450^\circ C$). It is thus clear that Ga induces the cation-polarity of the In$_{0.95}$Ga$_{0.05}$N film on O-polar ZnO at high temperature. In fact, a mixed polarity of (In,Ga)N films grown on O-face ZnO at $T_s > 500^\circ C$ was also observed by Namkoong et al., and Ga-polar GaN on O-polar ZnO has been reported by Ohgaki. A likely reason for this phenomenon is the formation of a centrosymmetric crystal at the interface such as Ga$_2$O$_3$ or ZnGa$_2$O$_4$. Ohgaki, for example, argued that an atomically thin Ga$_2$O$_3$ interfacial layer may cause polarity inversion. Indeed, Ga$_2$O$_3$ and ZnGa$_2$O$_4$ crystals are detected by TEM (Ref. 18) and XRD (Ref. 9) in GaN grown on ZnO at high temperatures (>600$^\circ C$), respectively.

These interfacial reactions between (In,Ga)N and ZnO can, however, be prevented by choosing a lower substrate temperature. Figure 6 displays the interface between an In$_{0.95}$Ga$_{0.05}$N film grown at 450$^\circ C$ and the ZnO substrate. The interface is abrupt and reveals a regular misfit dislocation network, formed by 60$^\circ$ a-type dislocations similar to that of pure InN grown on O-polar ZnO. A well-defined interface can thus be retained for substrate temperatures up to 450$^\circ C$.

In summary and conclusion, we have studied the effects of an additional Ga flux (Ga/In ≈ 0.05) on the properties of InN films on O-face ZnO at different substrate temperatures. This small amount of Ga results in dramatic changes in the morphology and structural properties of InN. In particular, IDBs start to appear at higher temperatures in the In$_{0.95}$Ga$_{0.05}$N film which we identifies to result from the chemical reaction of ZnO with Ga. For obtaining high-quality (In,Ga)N/ZnO, it is, therefore, imperative to avoid the formation of interfacial layers by using low substrate temperatures or by depositing a very thin coherent InN buffer layer between (In,Ga)N and ZnO.

The authors would like to thank Hans-Peter Schönherr for the maintenance of the MBE system. We are indebted to Vladimir Kaganer and Thomas Teubner for critical reading of the manuscript. Part of the work has been performed within the IAPP project SINOPLE, financed by the European Union.