Simple method for the determination of the Young's modulus of PVD coatings

Citation for published version (APA):

Document status and date:
Published: 01/01/1996

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

- A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us:
openaccess@tue.nl
providing details. We will immediately remove access to the work pending the investigation of your claim.
Introduction

The residual stresses in thin PVD hard coating can be determined by measuring the curvature change of a thin metal strip coated on one side. If the same strip is being heated, this will result in a curvature change due to the thermal properties mismatch (E, α) between the coating and the substrate. Establishing the relation $1/R=f(\Delta T)$ allows one to evaluate the Young’s modulus of the coating.

Theory

Outline of the method

Calculation

Experiment

Results

Conclusions

Acknowledgement

The authors wish to thank R. Pettersson for his advice on using TIM Windows.