Influence of water absorption on the mechanical properties of Polyamide 6 and Polyamide 4-6

Citation for published version (APA):

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Introduction

Nylon is a generic name for a family of long-chain polyamide engineering thermoplastics. The nylon family members have recurring amide groups [–CO–NH–] as an integral part of the main polymer chain and are named by the number of carbon atoms in the monomers. Because of the formation of hydrogen bonds between chains in nylon crystals, nylons generally have higher melting points than many other semi-crystalline polymers, high affinity for water, and their physical and mechanical properties are often significantly affected by the absorption of moisture.

Materials and conditioning

The equilibrium water absorption depends on the relative humidity (RH) of the surroundings and on the temperature (Fig. 1).

The absorbed water in polyamides gives rise to the presence of a lower endothermic peak at around 100 °C on DSC curves (Fig. 2). Difference in the size and area of water endothermic peaks are observed in dependence on water content.

Results

The existence of two distinct yield points in semi-crystalline polymer is attributed to the deformation of the amorphous phase for the first yield point and the deformation of the crystalline phase for the second yield point. At higher moisture level the double yielding disappears displaying only a very broad yield, similar to rubber-like deformation (Fig. 3).

Conclusions

- PA 4-6 has higher water absorption than PA 6.
- Water absorbed by polyamides acts as plasticizer and causes a drastic softening and decreasing the yield stress.