Ex-vivo experiments with a microrobotic surgical system for vitreo-retinal surgery
Meenink, H.C.M.; Naus, G.J.L.; Beelen, M.J.; Steinbuch, M.; Rosielle, P.C.J.N.; Smet, de, M.D.

Published: 01/01/2012

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 21. Nov. 2018
Abstract

Purpose
Developments in vitreoretinal eye surgery are limited by human capabilities. To improve current vitreoretinal surgical procedures and to enable new procedures, a robotic system has been developed called PRECEYES, extending human capabilities.

Methods
A compact, lightweight, easy to setup robotic master-slave system has been realized to perform vitreoretinal eye surgery (see Figure 1-3). The system’s reach covers the major part of the vitreous cavity (up to the peripheral region). A combination of advanced mechanical and control design facilitates high accuracy (<10µm) extending human capabilities and significant time saving. The accuracy and reproducibility of the system are validated by bench experiments, including pointing and pick-and-place movements. Vitreo-retinal surgical procedures were simulated in an eye model, eggs and porcine eyes via ex-vivo experiments. The experiments include cannula placement, vitrectomy and membrane peeling.

Results
A fully functional master-slave robotic system for vitreo-retinal eye surgery has been realized. First functional tests show a short setup time, an intuitive usage in combination with good ergonomics and satisfactory instrument reach and accuracy. Simulation of vitreo-retinal surgical procedures indicates improved accuracy and time efficient surgery compared to manual surgery.

Conclusion
A micro robotic surgical system for vitreo-retinal surgery is realized that meets the requirements and constraints imposed by this type of specialized surgery. First functional tests validate the realization of these requirements and constraints, improving current vitreous-retinal surgical procedures in time efficiency and accuracy, and enabling new, high-precision procedures.

Introduction
The PRECEYES robotic system consists of a master controller operated by the surgeon that controls two robotic arms (slave) which perform the actual surgery (Meenink, 2011; Hendrix, 2011, Figure 1). The haptic interfaces of the master controller provide the motion reference for the instrument manipulators of the slave system (Figure 3). The slave system performs the actual surgery by controlling instrument manipulators that directly handle the instruments. A comfortable and intuitive working environment is created by manipulating the haptic interfaces to simulate the instrument tip inside the eye (Figure 2). The PRECEYES robotic system is designed compact, lightweight and easy to setup to fit the current OR layout. With the PRECEYES robotic system instruments can be changed automatically, hand tremor can be filtered out, movements can be scaled, which allows µm precise movements. This could enable procedures as retinal vein cannulation for treating CRVO and BRVO.

Ex-vivo experiments
The chorioallantoic membrane (CAM) of chicken eggs is commonly used as a model for the retina as the membrane has similar characteristics as the retina (Leng, 2004). The first task involved peeling of the white inner shell membrane from the underlying CAM. With a knife and pick, the peel was successfully executed on the first attempt. It was performed within 2 minutes and without any complications such as bleeding. Similar results were realized using forceps to peel the membrane (Figure 4). After removing a piece of the inner shell membrane and exposing the CAM, retinal vein cannulation was simulated successfully to the veins on the CAM, having a diameter down to 35 µm (Figure 5). The outcome of these surgical tasks were consistent in subsequent experiments with various users. Ex-vivo experiments on porcine eyes showed a steady rotation point at the entry point through the pars-plana and a vitrectomy was performed.

References