Chaotic mixing in microfluidic devices

Citation for published version (APA):

Document status and date:
Published: 01/01/2005

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us:
openaccess@tue.nl
providing details. We will immediately remove access to the work pending the investigation of your claim.
Chaotic mixing in microfluidic devices

M.K. Singh, P.D Anderson, H.E.H Meijer
Dutch Polymer Institute
Eindhoven University of Technology, Department of Mechanical Engineering

Introduction
Mixing plays a vital role in microfluidic devices. The flow in microfluidic devices are predominantly laminar and producing turbulence is almost impractical. Chaotic advection is the way to improve mixing in microfluidics. In passive chaotic micromixers (no moving parts) the geometries are designed to provide transversal components of the flow that stretch and fold volumes (baker’s transformation) of fluid over the cross section of the channel (see Figure 1).

![Figure 1 Staggered herringbone mixer [1].](image1)

Objective
Optimize the mixing performance for staggered herringbone mixer (SHM) by applying different combinations of grooves.

Methods
Mapping matrix method is employed to simulate the evolution of concentration fields. Passive markers are advected in the flow field to compute mapping matrices (Figure 2). If the number of the markers in the donor cell number i is M_i and the number of markers found after tracking in the recipient cell number j equals M_{ij}, then the corresponding mapping coefficient $\phi_{ij} = \frac{M_{ij}}{M_i}$.

![Figure 2 Illustration of how to compute mapping matrices [2].](image2)

Results
The small grooves oriented at 45° angles on the surface of the mixer generates double helical patterns and the change in the orientation of the grooves between half cycles, exchanges the positions of the centers of rotation (Figure 3). The results of the mapping simulations are calculated for a single groove for both a half cycle element and a transition region. The mapping simulations give flexibility to easily design different combinations of grooves. The concentration evolution for an SHM with 6 grooves per half cycle is shown in Figure 4. Intensity of segregation is used as a mixing measure (Figure 5).

![Figure 3 Effect of change in orientation of grooves on the streamlines.](image3)

![Figure 4 Concentration evolution along the SHM mixer.](image4)

![Figure 5 Intensity of segregation for SHM mixer having 3, 6 and 10 grooves per half cycle respectively.](image5)

Conclusion
Based on our mapping matrix results, we conclude that the design with six grooves is optimal for mixing.

References:

/department of mechanical engineering