A one-step approach for in situ cardiovascular tissue engineering

Citation for published version (APA):
A one-step approach for in situ cardiovascular tissue engineering

A.I.P.M. Smits, A. Mol, C.V.C. Bouten, F.P.T. Baaijens
Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands

Introduction
Cardiovascular tissue engineering continues to evolve with the growing global need for appropriate prosthetic cardiac valves and blood vessels. The classic tissue engineering paradigm (fig. 1A) has inherent logistic and economic limitations because of the long throughput time for cell expansion and in vitro conditioning [1]. To create a clinically more attractive alternative with off-the-shelf availability, a novel approach of ‘guided tissue regeneration’ is suggested.

With this model system it should be possible to subject small samples to physiological cues, such as pressure, flow, strain and biochemical factors, and to evaluate the individual or combined effects of these cues on cell capture and retention, cell-matrix interactions, cell behavior (viability, proliferation, differentiation) and tissue formation (fig. 4).

Aim
The aim is to develop instructive, synthetic scaffolds for the in vivo repopulation by circulating endogenous progenitor cells for heart valves and small diameter arteries, conform a one-step in situ tissue engineering approach (fig. 1B). Primary goal of this study is to explore cell-scaffold interactions under bio-mimicking conditions.

Study approach

Model system
A model system will be developed to investigate the one-step approach in vitro using simple tissue geometries (fig. 2). The model system should allow for high-throughput, relatively simple, reproducible experiments on a variety of (bioactive) scaffold materials (fig. 3).

Thrombogenicity
Flow chamber experiments will be performed to evaluate platelet activation on a range of scaffold materials. Platelet activation will be used as an important measure, since this is considered to be the first instigator of the foreign body reaction and thrombogenic cascade [4]. Short-term implantation of scaffold patches in an animal model will be performed to form a first indicative onset towards preclinical testing.

References: