The effect of mechanical conditioning on the production of collagen degradation enzyme MMP-2
Rubbens, M.P.; Bouten, C.V.C.; Baaijens, F.P.T.

Published: 01/01/2005

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The effect of mechanical conditioning on the production of collagen degradation enzyme MMP-2

Mirjam P. Rubbens, Carlijn V.C. Bouten, Frank P.T. Baaijens
Biomechanics and Tissue Engineering, Soft Tissue Biomechanics and Engineering

Introduction
Collagen remodeling (e.g., changes in net turnover, fiber orientation, fiber thickness and length) is an equilibrium of collagen synthesis and degradation, strongly influenced by mechanical straining. In addition, this equilibrium is affected by degradation enzymes, e.g., matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) (figure 1).

However, no quantitative relationships for collagen remodeling are available. Therefore, the objective of this PhD study is to investigate the relation between mechanical conditioning, the amount and activity of MMPs, collagen architecture and mechanical properties:

Objective
The objective of this study is to investigate the relationship between time, strain and the production of MMP-2. This relationship will be used to optimize conditioning strategies to improve mechanical properties of tissue engineered heart valves.

Material and methods
Human vena saphena cells were seeded on a PGA-P4HB scaffold and mechanically strained for 27 days in a FlexCell setup (figure 3).

Results
The concentrations of MMP-2 in culture media of unattached, attached and 4% dynamically strained constructs were determined after 9, 18 and 27 days by ELISA.

Figure 4 Concentrations of MMP-2 in culture media of unattached, attached and 4% dynamically strained constructs after 9, 18 and 27 days. No significant changes are observed.

Conclusion
- No significant changes in MMP-2 concentrations in culture medium were observed in time and upon mechanical loading
- Concentrations and activities of MMPs must also be determined in constructs

Future work
- Optimization of MMP protocols to determine the activity of MMPs in culture medium and in constructs
- Quantification of the relation between time, strain, mechanical properties and MMP activities
- Investigation of the effect of adding a MMP inhibitor on the collagen architecture and mechanical properties

References: