How cracks propagate

Kanters, M.J.W.; Govaert, L.E.; Meijer, H.E.H.

Published: 01/01/2012

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
How cracks propagate in polymers
M.J.W. Kanters, L.E. Govaert, H.E.H. Meijer

Introduction
In long-term loading, the lifetime of polymers is usually limited due to failure caused by slow crack growth (SCG) (fig.1). Remarkably applying a dynamic load increases the crack propagation rate, resulting in a decrease in lifetime (fig.2). On this poster a possible explanation is given for this phenomenon.

Crack propagation mechanism
A crack is regarded to be a craze propagating through the material. The mechanism behind crack propagation is schematically illustrated in fig. 2: Due to a stress concentration at the crack tip, a), a plastic deformation zone forms, b). Since the material cannot deform in the thickness direction (plane strain), cavitation causes drawing of ligaments into fibrils, c). Breakdown of these fibrils, often stated to be caused by disentanglement and chain scission, results in growth and activation of the ligaments next to the deteriorated fibrils, d).

Dynamic loading?
A dynamic load results in stretching and compressing of fibrils, although the load is always in tension, because crack closure occurs during the minimum load (fig.4). During crack closure the plastic zone at the crack tip is compressed, causing the fibrils to buckle and therefore faster deterioration of the fibrils. Fig.5 shows the crack surface of a dynamic loaded polycarbonate sample, which shows the large plastic (“fibril-like”) zones and, at larger crack lengths, a fountain-like pattern due to plane stress.